Elements of Bio	Semester	I/II	
Course Code	1BEBTL107/207	CIE Marks	50
Teaching Hours/Week (L:T:P:S)	0:0:2:0	SEE Marks	50
Total Hours of Pedagogy	24	Total Marks	100
Credits	1	Exam Hours	3
Examination type (SEE)	Praction	cal	

Course outcome

At the end of the course, the student will be able to:

- 1. CO1: Describe the fundamental concepts of biotechnology, biomolecules, cell structure, and biomimetic principles.
- 2. CO2: Apply biotechnological techniques such as DNA extraction, gel electrophoresis, microbial culture, and enzyme assays in laboratory settings.
- 3. CO3: Analyze applications of biotechnology and biomimicry across engineering domains to solve practical problems.
- 4. CO4: Design and present experimental models or prototypes integrating biological concepts with engineering solutions.
- 5. CO5: Demonstrate teamwork, communication, and problem-solving skills through interdisciplinary project activities.

Note:

- 1. The laboratory syllabus consists of PART-A and PART-B. While PART-A has 6 conventional experiments, PART-B has 6 typical open-ended experiments. The maximum marks for the laboratory course are 100.
- 2. Both PART-A and PART-B are considered for CIE and SEE.
- 3. Students have answer 1(one) question from PART-A and 1(one) question from PART-B.
 - a. The questions set for SEE shall be from among the experiments under PART-A. It is evaluated for 70 marks out of the maximum 100 marks.
 - b. The open-ended question set for SEE shall be any other open-ended question and not selected from the experiments under PART-A. It shall be evaluated for 30 marks.
- 4. For continuous internal evaluation, during the semester, classwork, the typical open-ended questions shall be from PART-B, and any other similar questions to enhance the skill of the students

PART - A COVENTIONAL EXPERIMENTS

Biochemical Estimations

- 1. Preparation of standard buffers
- 2. Estimation of carbohydrates and protein with error analysis

Microbial techniques

3. Sterilization of glassware using dry and wet heat

Microscopy & Staining

- 4. Onion root tip stages of mitosis & mitotic index
- 5. Cell viability studies with Trypan Blue
- 6. Observation of prokaryotic and eukaryotic cells (Preparation of permanent slides)

PART - B TYPICAL OPEN-ENDED EXPERIMENTS

Open-ended experiments are a type of laboratory activity where the outcome is not predetermined, and students are given the freedom to explore, design, and conduct the experiment based on the problem statements as per the concepts defined by the course coordinator. It encourages creativity, critical thinking, and inquiry-based learning.

- 1. Concept 1: Antimicrobial activity: Antimicrobial Sensitivity Testing using Plant Extracts or Antibiotics
- 2. Concept 2: Bio fertilizers::inoculation of Tichoderma/Rhizobium/Azotobacter/VAM on seeds
- 3. Concept 3: Fermentation of Local Fruits for Alcohol or Acid Production
- 4. Concept 4: Estimation of pigments (chlorophyll, anthocyanin, lycopene) from fruits and vegetables
- 5. Concept 5 : Biomimetic Demonstrations: lotus leaf effect (water droplet rolling), self-cleaning surface models, seashell hardness tests.
- 6. Concept 6 : Antagonist properties of Soil fungus using dual culture

Suggested Learning Resources: (Text Book/ Reference Book/ Manuals):

Text books:

- 1. Bhushan, B. Biomimetics: Bioinspired Materials, Structures and Functions, Springer, pp. 1–300, 2017.
- 2. Singh, B.D. Biotechnology: Expanding Horizons, Kalyani Publishers, pp. 1–796, 2016.
- 3. Rastogi, S.C. Cell Biology, New Age International, pp. 1–400, 2013.

Reference books / Manuals:

- 1. Karp, G. Cell and Molecular Biology: Concepts and Experiments, Wiley, pp. 1–848, 2018.
- 2. Brown, T.A. Gene Cloning and DNA Analysis: An Introduction, Wiley-Blackwell, pp. 1–312, 2016.
- 3. Pelczar, M.J., Chan, E.C.S., Krieg, N.R. Microbiology: Concepts and Applications, Tata McGraw-Hill, pp. 1–896, 2009.
- **4.** Voet, D., Voet, J.G., Pratt, C.W. Fundamentals of Biochemistry: Life at the Molecular Level, Wiley, pp. 1–1200, 2016.

Web links and Video Lectures (e-Resources):

NPTEL Courses

- 1. NPTEL Introduction to Biotechnology, https://nptel.ac.in/courses/102/105/102105086/
- 2. NPTEL Cell Biology, https://nptel.ac.in/courses/102/103/102103012/
- 3. NPTEL Molecular Biology, https://nptel.ac.in/courses/102/106/102106025/
- 4. NPTEL Principles of Downstream Techniques in Bioprocess, https://nptel.ac.in/courses/103/103/103103112/
- 5. NPTEL Biomimicry: Innovation Inspired by Nature, https://nptel.ac.in/courses/112/106/112106324/

Virtual Labs (Amrita / IIT)

- 1. Biotechnology & Biomedical Engineering Virtual Labs Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=3
- 2. Microbiology Virtual Lab IIT Bombay, https://vlab.co.in/mainsite/Virtual-Labs.php?id=36
- 3. Biochemistry Virtual Lab IIT Bombay, https://vlab.co.in/mainsite/Virtual-Labs.php?id=39

Teaching-Learning Process (Innovative Delivery Methods):

- 1. The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.
- 2. Use flipped classroom for active discussions and problem-solving during sessions.
- 3. Apply virtual labs for pre-lab familiarization and concept reinforcement effectively.
- 4. Introduce problem-based learning projects linking biotechnology and biomimetic applications.

- 5. Conduct case study discussions on real-world biotechnology and biomimicry innovations.
- 6. Utilize gamified quizzes through Kahoot or Quizizz for formative assessments.
- 7. Demonstrate experimental setups before student hands-on laboratory practical sessions start.
- 8. Encourage interdisciplinary mini-projects integrating biology concepts with engineering solutions.
- 9. Invite industry experts for webinars on recent biotechnological and biomimetic trends.
- 10. Implement peer teaching activities to enhance student understanding and presentation skills.
- 11. Use mind-mapping tools to visually connect complex interdisciplinary course concepts.

Assessment Structure:

The assessment for each course is equally divided between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each component carrying **50% weightage** (i.e., 50 marks each). The CIE Theory component will be 25 marks and CIE Practical component will be 25 marks.

The CIE marks awarded shall be based on the continuous evaluation of the laboratory report using a defined set of rubrics. Each experiment report can be evaluated for 30 marks. The laboratory test (duration 03 hours) at the end of the last week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 20 marks. For both CIE and SEE, the student is required to conduct one experiment each from both Part A and Part B.

Rubrics for CIE - Continuous Assessment: 30 Marks

Performance	Excellent	Good	Satisfactory	Needs	Poor
Indicators				Improvement	
Technical Skills	Performs all	Minor	Requires	Frequent	Unable to
& Procedure	experimental steps	procedural	occasional	mistakes,	perform
(PO1 & PO5)	(e.g., microscopy	errors but	guidance,	unable to	basic
(10)	staining, enzyme assay)	overall	some	maintain	techniques
	with precision, no	method	procedural	experimental	independentl
	errors in methodology.	correct;	mistakes.	standards. (3-	y. (0-2)
	(9–10)	understands	(5-6)	4)	
		principles.			
		(7-8)			
Safety	Strict adherence to PPE	Follows	Sometimes	Unsafe	No PPE;
Compliance	and biosafety rules;	safety rules	neglects	chemical/mic	high-risk
(P06) (5)	workspace well-	with	safety	robial	unsafe
	maintained. (5)	occasional	precautions	handling	behavior. (0–
		lapses. (4)	. (3)	practices. (2)	1)
Team Interaction	Leads effectively,	Cooperative,	Minimal	Reluctant or	Disruptive or
(PO8) (5)	collaborates, resolves	completes	participatio	slow in group	uncooperativ
	issues constructively.	assigned role	n in	tasks. (2)	e in team
	(5)	well. (4)	teamwork.		activities. (1)
			(3)		
Lab Report	Exceptionally detailed,	Complete,	Minor	Incomplete or	No
Quality (PO9)	well-organized; data	well-	errors in	inaccurate	submission
(10)	accurate; insightful	structured;	data/analys	data; poorly	or
	analysis. (9–10)	minor	is; slightly	organized.	unacceptable
		inaccuracies.	unclear	(3-4)	quality. (0-2)
		(7-8)	organizatio		
			n. (5-6)		

Rubrics for SEE / CIE Test:

(CIE test -To be conducted for 100 marks and the marks obtained shall be reduced to 20) (SEE-To be conducted for 100 marks)

Performance	Excellent	Good	Satisfactor	Needs	Poor
Indicators			у	Improvement	
Execution of	Perfect	Minor errors in	Acceptabl	Multiple execution	Unable to
Experiment (PO3	execution of	parameter	e work	errors, frequent	perform
& PO5) (40) / (8)	both Part A &	settings;	with	intervention	experiment
	В	method mostly	several	needed. (9–16) /	without
	experiments;	correct. (25–	handling	(2)	assistance. (0–8)
	correct	32) / (5-6)	mistakes. (17–24) /		/(0-1)
	equipment handling.		(3-4)		
	(33–40) / (7–		(3-4)		
	8)				
Results &	Accurate	Data correct	Mostly	Incomplete/wrong	No valid results
Discussion (PO4)	data,	but limited	correct	results, weak	or analysis. (0–8)
(40) / (7)	insightful	analysis depth.	results,	interpretation. (9–	/ (0-1)
	analysis	(25-32) / (5-	basic	16) / (2)	
	linked to	6)	discussion		
	theory. (33-		. (17–24)		
45.50	40) / (7-8)		/ (3-4)		
Viva Voce (PO9)	Confident,	Mostly correct	Limited	Vague, incomplete	No relevant
(20) / (5)	correct	answers; minor	but	answers. (5–8) /	answers. (0–4) /
	answers demonstratin	gaps. (13–16) /	relevant	(2)	(1)
	g deep	(4)	answers. (9-12) /		
	understandin		(3)		
	g. (17–20) /		(3)		
	(5)				
Performance	Excellent	Good	Satisfactor	Needs	Poor
Indicators			у	Improvement	

- To qualify and become eligible to appear for SEE, in the CIE component, a student must secure a minimum of 40% of 50 marks, i.e., 20 marks.
- To pass the **SEE component**, a student must secure **a minimum of 35% of 50 marks**, i.e., **18 marks**.
- A student is deemed to have successfully completed the course if the combined total of CIE and SEE is at least 40 out of 100 marks.

Rubrics suggested for Practical continuous assessment					
Performance	Excellent	Very Good	Good	Satisfactory	
Indicators					
Fundamental	The student demonstrates in-	The student has a	The student can	The student	
Knowledge (4)	depth knowledge of core	solid understanding	narrate the basic	has a limited	
(PO1)	biotechnology principles and	of key concepts	steps and	understandin	
	lab techniques, confidently	related to the	purpose of the	g of the	
	explaining the theory behind	experiments, such	experiments but	concepts and	
	experiments like buffer	as the principles of	struggles to	procedures	
	preparation, biochemical	cell viability studies	explain the	involved in	

	agtimations starilization J	on the function of	undorlyri	the lab work.
	estimations, sterilization, and	or the function of different microbial	underlying	
	staining. (4 marks)		scientific	(1 mark)
		techniques. (3	principles. (2	
		marks)	marks)	
Design of	For open-ended experiments	The student can	The student can	The student
Experiment (5)	(Part B), the student is	discuss a few	describe a single,	struggles to
(PO2 & PO3)	capable of proposing and	potential	standard	formulate a
(102 & 103)	justifying a novel	experimental	experimental	coherent
	experimental design,	designs for an open-	design but shows	design for
	selecting the best approach	ended problem but	limited	the open-
	with proper reasoning (e.g.,	may not fully justify	understanding of	ended
	justifying the choice of plant	the selection of the	its variations or	experiments.
	extract for antimicrobial	most suitable one.	alternatives. (3	(1-2 marks)
	activity or the type of	(4 marks)	marks)	(1-2 marks)
	fermentation setup). (5	(+ marks)	marks)	
	marks)			
Implementation	The student flawlessly	The student	The student	The student
(8) (PO3 & PO8)	executes the experimental	correctly	attempts to	is unable to
	procedure, including accurate	implements the	implement the	correctly
	media preparation, dilutions,	experiment	experiment but	follow the
	and staining techniques, and	following the	makes several	experimental
	uses optimal methods for	standard protocol	procedural	procedure,
	data collection. (7-8 marks)	with minor	errors that affect	leading to an
		deviations that do	the quality or	incomplete
		not impact the	reliability of the	or failed
		overall outcome. (5-	results. (3-4	experiment.
		6 marks)	marks)	(1-2 marks)
Result & Analysis	The student accurately	The student records	The student	The student
(5) (PO4)	records and presents all	the results for all	collects data for	records data
	results, including error	cases and can	a few cases and	but is unable
	analysis for estimations, and	provide a basic	offers a limited	to perform a
	provides a thorough analysis	analysis of the	analysis of the	meaningful
	of the findings, comparing	outcomes. (4 marks)	results. (3	analysis or
	results from different trials or		marks)	interpret the
	conditions (e.g., comparing			results. (1-2
	the effectiveness of different			marks)
	plant extracts in the			
Dom t t	antimicrobial test). (5 marks)	The lele 1	The later 1	ml - 1.1
Demonstration	The lab record is	The lab record is	The lab record	The lab
(8) (PO9)	exceptionally well-organized	organized and	lacks a clear	record is
	and detailed, with clear	follows the required	structure or	poorly
	sections on methods, results, and conclusions. The write-	structure, but some sections could be	logical flow, with	organized
			incomplete or unclear sections.	and contains
	up reflects a deep understanding of the	more detailed or		significant
	experiment and its relevance.	clearly defined. (5-6	(3-4 marks)	missing or unclear
	(7-8 marks)	marks)		information,
	(7-0 marks)			making it
				difficult to
				follow the
				experiment.
				(1-2 marks)
		l		(1-2 marks)