Interdiscipli	Semester	1/2	
Course Code	1BPRJ258	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	0:0:2	SEE Marks	50
Total Hours of Pedagogy	2 (Full day of Saturday may be allotted)	Total Marks	100
Credits	1	Exam Hours	
Examination type (SEE)	Presentation/Practical/MCQ		

Course Outcome (Course Skill Set) - On successful completion, students will be able to:

- 1. Identify and define problems requiring interdisciplinary knowledge.
- 2. Apply basic concepts of science, engineering, and technology to design simple solutions.
- 3. Work effectively in teams with defined roles and responsibilities.
- 4. Use project management, documentation, and presentation skills.
- 5. Develop socially relevant, sustainable, and innovative prototypes/solutions.

Week - 1, 2 & 3: Introduction, Orientation, Team Formation and Literature Survey

Week -1&2: Introduction to project-based learning & interdisciplinarity. Motivational talk / case studies of successful student projects. Ice-breaking and team-building activities. Formation of groups (4–6 students). Selection of broad theme areas. Brainstorming techniques {mind mapping, 5W1H (what, who, when, where, why, and how) SCAMPER}. Identifying problems. Discuss feasibility & Interdisciplinarity. Mentor approval of project problem.

Week-3: How to search for prior work (journals, patents, research project, case studies). Understanding user needs. Role of each engineering branch in solving the problem.

Deliverables - Team list + chosen theme area and Literature survey report.

Week- 4, 5 and 6: Problem Statement, Multiple Solution Ideas and Selection of Best IDEA

Week-4&5: Refining the problem statement. Identifying constraints and scope. Framing objectives & expected outcomes. Generating multiple solution ideas. Discussing feasibility (technical, economic, social). Team roles assigned (design, research, coding, documentation, testing).

Week-6: Criteria-based selection of best idea (decision matrix). Rough sketches, block diagrams, flowcharts. Resource planning (materials, software, tools).

Deliverables - Finalized Problem definition with objectives, List of solution concepts (sketches/flowcharts) and Design document (diagrams, flow)

Week -7, 8 and 9: Selection of Best IDEA and Prototyping

Week-7: Work breakdown structure (task division). Timeline for development. Safety & ethical considerations.

Week-8&9: Development of subsystems/modules, Application of classroom knowledge (electrical circuits, coding, mechanics, CAD, etc.), Peer & mentor review sessions.

Deliverables - Prototype development plan, Subsystem demos (partial working models).

Week 9, 10,11&12: Prototyping stage 2 using Atal Idea Lab/Makers Space

Week-9&10: Integration of subsystems. Debugging & troubleshooting. Improvement based on test results.

Week-11&12: Testing against objectives & user requirements. Experimentation results (tables, graphs). Analysing failures/limitations.

Deliverables – Prototype/working model, Testing Results, Limitations/challenges

Week 13 & 14: Refinement & Pre-Final Review

Week-13&14: Refining prototype for efficiency, cost, sustainability. Internal review & peer feedback. Preparing visuals for final presentation (posters, PPT, demo video).

Deliverables – Final Results of Experimentation or Testing & Working/ Prototype Model

Week 15 &16: Final Demo and Social Pitch

Project pitching to jury - Presentation of the project with impact with assessment, prototype, and sustainability plan

Teaching-Learning Process (Innovative Delivery Methods)

- 1. Activity Based Learning
- 2. Group discussion, Presentations.
- 3. one faculty member shall be assigned to group of 60 students or one division.
- 4. Each group shall contain Min. 4 and Max. 6 students.
- 5. Nature of the group shall be multidisciplinary. (Group shall be formed by selecting students from all branches)

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks.
- To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks.

Notwithstanding the above, a student is considered to have **passed the course**, provided the combined total of **CIE** and **SEE** is at least 40 out of 100 marks.

Continuous Internal Evaluation (CIE) –

CIE Marks allocation Parameters for Interdisciplinary Project Work

CIE Parameters (50 Marks)

Stage/Activity		Marks (out of 50)	Description
Weeks 1–4: Problem Identification & Literature Survey	10%		Focus on forming teams, identifying problems, understanding user needs, and reviewing prior work through journals, patents, etc.
Weeks 5–7: Concept Development & Design	20%		Defining problem statements, framing objectives, generating ideas, preparing diagrams, flowcharts, and resource planning.
Weeks 8–11: Prototype Development	30%	15 marks	Creating subsystems, applying theoretical knowledge, peer and mentor review sessions, debugging, and troubleshooting.
Week 12: Testing & Validation	10%	5 marks	Evaluating the prototype's performance, user requirements, experiments, and analysis of failures.
Weeks 13–14: Documentation & Presentation	30%	15 marks	Finalizing the prototype, improving based on feedback, preparing presentations, reports, and demonstration materials.

^{*}Minimum to Qualify for SEE: 20 out of 50 in CIE

Semester End Examination (SEE) –

SEE to be conducted in batches where the students will exhibit their projects along with the presentation and Viva -voce. $-100\,\mathrm{Marks}$

"SEE shall be conducted by one Internal and one External Examiner"

Component	Weightage (%)	Marks (out of 100)	Description
Final Presentation & Demonstration	30%	30	Clear articulation of the problem, solution approach, prototype, and team contribution. Delivery, engagement, and response to questions are evaluated.
Prototype Quality & Functionality	30%	30	Working model evaluation, application of engineering principles, problem-solving effectiveness, debugging, and system integration.
Documentation Report	20%	20	Completeness, structure, accuracy, clarity in diagrams, data analysis, testing results, and conclusions.
Social Impact & Sustainability	05%	05	Relevance to society, cost-effectiveness, ethical considerations, environmental impact, and scalability.
Innovation & Originality	10%	10	Creativity, uniqueness, feasibility, and application of interdisciplinary concepts.
Viva – voce	05%	05	Viva – voce

Submission Requirements:

- Handwritten activity book with CIE marks and Final project report (Typed or Handwritten).
- Final presentation ppt/pdf (hard and soft copy).
- Prototype or working model [physical or conceptual (shall be drawn/sketched clearly on card sheet paper)].
- Peer/team feedback and reflection entries (if applicable).