BLOW UP SYLLABUS Differential Calculus and Linear Algebra for First year Civil Engineering (1BMATC101) (Effective from the academic year 2025-26)

Topics	Topics To be Covered	Remarks	
Module-1: Polar Curves and Curvature			
Polar coordinates, Polar curves,	Discussion and coverage of		
angle between the radius vector	contents as suggested in the		
and the tangent, angle between	topic. (No derivation on		
two curves. Pedal equations.	curvature in any form)		
Curvature and radius of			
curvature - Cartesian,			
parametric, polar and pedal			
forms, Problems			
Module-2: Series Expansion, Indeterminate Forms and Multivariable Calculus			
(8Hours Theory) + (4Hours Tutorials)			
Statement and problems on	In Indeterminate forms -	No Problems set	
Taylor's and Maclaurin's series	L'Hospital's rule. Problems	onTaylor's series	
expansion for one variable.	restricted to $(\infty - \infty)$, 1^{∞} , 0^{∞}		
Indeterminate forms -	∞^0 ,		
L'Hospital's rule. Partial	No verification on Jacobian		
differentiation, total derivative -	$\int JJ^1 = 1$		
differentiation of composite			
functions, Jacobian, Maxima and			
minima for the function of two			
variables.			
Module-3: Ordinary Differential Equations of First Order (8Hours Theory) +			
(4Hours Tutorials)			
Linear and Bernoulli's		No Problems set	
differential equation. Exact and		on Linear and	
reducible to exact differential		Exact differential	
equations with integrating		equations in the	
factors $-\frac{1}{N}\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right)$ and		final examination.	
$\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$. Orthogonal			
trajectories, Law of natural			
growth and decay.	ustions of Higher Codes		
Module-4: Ordinary Differential Equations of Higher Order			
(8Hours Theory) + (4Hours Tutorial			
Higher-order linear ordinary	No change	In the SEE	
differential equations with		Governing equation	
constant coefficients,		has to be given to solve the	
homogeneous and non-		differential equation	
homogeneous equations (e ^{ax} ,		on mass spring	
$\sin(ax+b)$, $\cos(ax+b)$, x^n only),		on mass spring	
Method of variation of			

parameters, Cauchy's and	
Legendre's homogeneous	C
differential equations.	Sug
Applications: Solving governing ge	gest
differential equations of Mass	ed
Spring.	.ear
Module-5: Linear Algebra (8Hours Theory) + (4Hours Tutorials)	ning
Elementary row transformation No Changes	_
of a matrix, Rank of a matrix.	Res
Consistency and Solution of out	urc
system of linear equations -	es:
Gauss-elimination method and	Tex
approximate solution by Gauss-	boo
Seidel method. Eigenvalues and	
Eigenvectors, Rayleigh's power	/Re
method to find the dominant fer	ere
Eigenvalue and Eigenvector.	nce
Applications: Traffic flow.	Воо

k):

Textbooks:

- 1. **B.S. Grewal,** HigherEngineeringMathematics, KhannaPublishers,44th Ed., 2021.
- 2. **E.Kreyszig**, AdvancedEngineeringMathematics,JohnWiley&Sons,10th Ed.,2018.
- 3. **GilbertStrang**, LinearAlgebraanditsApplications,CengagePublications,4thEd.,2022.

Reference books:

- 1. **B.V.Ramana**, HigherEngineeringMathematics,McGraw-HillEducation,11thEd., 2017
- 2. **Srimanta Pal & Subodh C.Bhunia**, Engineering Mathematics, Oxford University Press, 3rd Ed., 2016.
- 3. **N. P.BaliandManishGoyal,** ATextbookofEngineeringMathematics,Laxmi Publications,10thEd.,2022.
- 4. **H.K.DassandEr.RajnishVerma**, HigherEngineeringMathematics,S.Chand Publication, 3rd Ed., 2014.
- 5. **DavidCLay,** LinearAlgebraanditsApplications, PearsonPublishers, 4thEd., 2018.