BLOW UP SYLLABUS

(Effective from the academic year 2025-26)

Course Title: Calculus, Laplace Transforms and Numerical Techniques

Course Code: **1BMATE201**

Topics	Topics To be Covered	Remarks	
Module-1: Integral Calculus and its applications (8 Hours Theory + 4 Hours Tutorial)			
Multiple Integrals: Evaluation of double and triple integrals, change of order of integration, changing to polar coordinates. Areas and volume using double integration. Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions. Text Book-1: Chapter-7.1, 7.2, 7.3, 7.4, 7.5, 7.6(1), 7.14, 7.15, 7.16. Module-2: Vector calculus and its applications (8)	No Change B Hours Theory + 4 Hours	No questions shall be asked in the SEE (Semester End Examination) on the construction of limits using region statement.	
Vector differentiation: Scalar and vector fields, gradient of a scalar field, directional derivatives, divergence of a vector field, solenoidal vector, curl of a vector field, irrotational vector, physical interpretation of gradient, divergence and curl and scalar potential. Vector Integration: Line integrals, Statement of Green's and Stokes' theorem without verification problems. Text Book-1: Chapter-8.4, 8.5, 8.6, 8.7, 8.11, 8.13,8.14 Module-3: Numerical Methods-1 Solution of algebraic and transcendental equations: Regula-Falsi method, and Newton-Raphson method. Finite Differences and Interpolation: Forward and backward differences, Interpolation,	No Change 8 Hours Theory + 4 Hour	No verification problems on Green's and Stokes' theorem Tutorial No problems on Inverse Lagrange's Interpolation	
Newton forward and backward interpolation formulae, Newton's divided difference interpolation formula and Lagrange's interpolation formula. Numerical Integration: Trapezoidal rule, Simpson's 1/3rd rule and Simpson's 3/8th rule. Text Book-1: Chapter-28.1, 28.2(2,3), 29.1(1,2), 29.6(1,2), 29.9, 29.10, 29.11, 29.12, 30.4, 30.6, 30.7, 30.8.	8 Hours Theory + 4 Hou	rs Tutorial)	
Numerical solution of ordinary differential equations of first order and first degree: Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order, Milne's predictor corrector method and Adam-Bashforth predictor-corrector method.		Problems on Runge-Kutta method of fourth order restricted to one stage only.	
Text Book-1: Chapter-32.1, 32.3, 32.5, 32.6, 32.7,328, 32.9, 32.10.			

Module-5: Laplace transforms (8 Hours Theory + 4 Hours Tutorial)		rs Tutorial)
Laplace transforms: Definition and Formulae of	No derivations on LT	
Laplace Transforms, Laplace Transforms of	of elementary	
elementary functions. Properties–Linearity, Scaling,	functions.	
shifting property, differentiation in the s domain,		
division by t. Laplace Transforms of periodic	Only problems on	
functions, square wave, saw-tooth wave, triangular	Properties.	
wave, full and half wave rectifier, Heaviside Unit		
step function.	No Derivation on LT	
Inverse Laplace Transforms: Definition, properties,	of periodic function.	
evaluation of Inverse Laplace Transforms using	of periodic function.	
different methods, and applications to solve		
ordinary differential equations.		
Text Book-1: Chapter-21.1, 21.2, 21.3, 21.4(I,II,III), 21.5,		
21.9, 21.10, 21.12, 21.13, 21.15, 21.17.		

Suggested Learning Resources: (Textbook/ Reference Book):

Textbooks:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44th Ed., 2021.
- 2. E. Kreyszig, Advanced Engineering Mathematics, JohnWiley & Sons, $10^{\rm th}$ Ed., 2018.
- 3. M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publishers, 8th Ed., 2022.

Reference books:

- 1. B. V. Ramana, Higher Engineering Mathematics, McGraw-HillEducation,11thEd., 2017
- 2. Srimanta Pal & Subodh C. Bhunia, Engineering Mathematics, Oxford University Press, 3rd Ed., 2016.
- 3. N. P. Bali and Manish Goyal, A Text book of Engineering Mathematics, Laxmi Publications, 10thEd., 2022.
- 4. H. K. Das and Er. Rajnish Verma, Higher Engineering Mathematics, S. Chand Publication, 3rd Ed., 2014.
- 5. Steven V. Chapra and Raymond P. Canale, Applied Numerical Methods with Matlab for Engineers and Scientists, McGraw-Hill, 3rdEd., 2011.
- 6. Richard L. Burden, Douglas J. Faires and A. M. Burden, Numerical Analysis, 10th Ed., 2010, Cengage Publishers.
- 7. S.S. Sastry," Introductory Methods of Numerical Analysis", PHI Learning Private Limited, 5th Ed., 2012.