BLOW UP SYLLABUS Differential Calculus and Linear Algebra

for First year Civil Engineering (1BMATM101) (Effective from the academic year 2025-26)

Topics	Topics To be Covered	Remarks	
Module-1: Polar Curves and Curvature			
Polar coordinates, Polar curves,	Discussion and coverage of		
angle between the radius vector	contents as suggested in the		
and the tangent, angle between	topic. (No derivation on		
two curves. Pedal equations.	curvature in any form)		
Curvature and radius of			
curvature - Cartesian,			
parametric, polar and pedal			
forms, Problems			
Module-2: Series Expansion, Indeterminate Forms and Multivariable Calculus			
Statement and problems on	In Indeterminate forms -	No Problems set	
Taylor's and Maclaurin's series	L'Hospital's rule. Problems	on Taylor's series	
expansion for one variable.	restricted to $(\infty-\infty)$, 1^{∞} , 0^{∞}	-	
Indeterminate forms -	∞^0 ,		
L'Hospital's rule. Partial	No verification on Jacobian		
differentiation, total derivative -	$JJ^1 = 1$		
differentiation of composite			
functions, Jacobian, Maxima and			
minima for the function of two			
variables.			
Module-3: Ordinary Differential Equations of First Order			
Linear and Bernoulli's		No Problems set	
differential equation. Exact and		on Linear and	
reducible to exact differential		Exact differential	
equations with integrating		equations in the	
factors $-\frac{1}{N}\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right)$ and		final examination.	
$\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$. Orthogonal			
trajectories, Law of natural			
growth and decay.			
Module-4: Linear Algebra -1			
Elementary row transformation	No change		
of a matrix, Row echelon form	_		
and Rank of a matrix. Inverse of			
matrix by Jordan method.			
Consistency and Solution of			
system of linear equations -			
Gauss-elimination method, LU			
decomposition method and			
approximate solution by Gauss-			
Seidel method. Application to			

traffic flow.		
Module-5: Linear Algebra		
Eigenvalues and Eigenvectors,	No Change	Sug
Rayleigh's power method to find		gest
the dominant Eigenvalue and		ed
Eigenvector. Model matrix,		Lear
Diagonalization of the matrix,		ning
inverse of a matrix by Cayley-		
Hamilton theorem,		Res
Characteristic and minimal		ourc
polynomials of block matrices,		es:
Moore-Penrose pseudoinverse.		(Tex

tbook/Reference Book):

Textbooks:

- 1. **B.S. Grewal,** HigherEngineeringMathematics, KhannaPublishers,44th Ed., 2021.
- 2. **E.Kreyszig**, AdvancedEngineeringMathematics,JohnWiley&Sons,10th Ed.,2018.
- 3. **GilbertStrang**, LinearAlgebraanditsApplications,CengagePublications,4thEd.,2022.

Reference books:

- 1. **B.V.Ramana**, HigherEngineeringMathematics,McGraw-HillEducation,11thEd., 2017
- 2. **Srimanta Pal & Subodh C.Bhunia**, Engineering Mathematics, Oxford University Press, 3rd Ed., 2016.
- 3. **N. P.BaliandManishGoyal,** ATextbookofEngineeringMathematics,Laxmi Publications,10thEd.,2022.
- 4. **H.K.DassandEr.RajnishVerma**, HigherEngineeringMathematics,S.Chand Publication, 3rd Ed., 2014.
- 5. **DavidCLay,** LinearAlgebraanditsApplications, PearsonPublishers, 4thEd., 2018.