BLOW UP SYLLABUS Differential Calculus and Linear Algebra

for First year Civil Engineering (1BMATM201) (Effective from the academic year 2025-26)

Topics	Topics To be Covered	Remarks
Module-1: IntegralCalculus		
Multiple Integrals: Evaluation of double and triple integrals,	No Change	
evaluation of double integrals by change of order of		
integration, changing into polarcoordinates. Applications to		
find Area and Volume by double integral.		
Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions.		
Module-2: Ordinary Differential Equations of Higher Order		
Higher-order ordinary differential equations with constant coefficients, homogeneous and non-homogeneous equations- e ^{ax} , sin(ax+b), cos(ax+b), x ⁿ only, Method of variation of parameters, Cauchy's and Legendre's homogeneous differential equations. Applications: mass spring model.	No Changes	
Module-3: VectorCalculus		
Scalarandvectorfields. Gradient, directional derivative, divergence and curl -physical interpretation, solenoidal vector fields, irrotational vector fields and scalar potential. Vector Integration: Line integrals, work done by a force and flux, Statements of Green's theorem and Stoke's theorem, problems without verification.	No Change	
Module-4: NumericalMethods- 1		
Solutionofalgebraicandtranscendentalequations: Regula-FalsiandNewton-Raphsonmethods, problems. Interpolation: Finite differences, Interpolation using Newton's forward and backward difference formulae,Newton's divided difference formula and Lagrange's interpolation formula. Numericalintegration:Trapezoidal,Simpson's 1/3 rd and 3/8 th rules.	No change	
Module-5:NumericalMethods- 2		
Numerical solution of ordinary differential equations of first order and first degree: Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order, Milne's predictor-corrector method and Adams-Bashforth predictor-corrector method.	No Changes	

Suggested Learning Resources: (Textbook/Reference Book):

Textbooks:

- 1. **B.S. Grewal,** HigherEngineeringMathematics, KhannaPublishers,44th Ed., 2021.
- 2. **E.Kreyszig**, AdvancedEngineeringMathematics,JohnWiley&Sons,10th Ed.,2018.
- $3. \quad \textbf{GilbertStrang}, \ Linear Algebra and its Applications, Cengage Publications, 4^{th} Ed., 2022.$

Reference books:

- 1. **B.V.Ramana**, HigherEngineeringMathematics,McGraw-HillEducation,11thEd., 2017
- 2. **Srimanta Pal & Subodh C.Bhunia**, Engineering Mathematics, Oxford University Press, 3rd Ed., 2016.
- 3. **N. P.BaliandManishGoyal,** ATextbookofEngineeringMathematics,Laxmi Publications,10thEd.,2022.
- 4. **H.K.DassandEr.RajnishVerma**, HigherEngineeringMathematics,S.Chand Publication, 3rd Ed., 2014.
- 5. **DavidCLay,** LinearAlgebraanditsApplications, PearsonPublishers, 4thEd., 2018.