BLOW UP SYLLABUS

Course Name: Numerical Methods: CSE Stream

Course Code: 1BMATS201 (Effective from the academic year 2025-26)

Topics	Topics To be Covered	Remarks
Module-1: Introduction to Num		
Errors and their computation:	No restrictions	No questions on
Round off error, Truncation		convergence of roots
error, Absolute error, Relative		
error and Percentage error.		
Solution of algebraic and		
transcendental equations:		
Bisection, Regula-Falsi,		
Secant and Newton-Raphson		
methods.		
Module-2: Numerical solutions for system of linear equations (8Hrs Theory) + (4Hrs Tutorials)		
Norms: Vector norms and Matrix norms-L1, L2 and L∞, Ill conditioned linear system, condition number. Solution of system of linear equations: Gauss Seidel method and LU-decomposition method. Eigenvalues and Eigen vectors: Rayleigh power method, Jacobi's method Module-3: Interpolation(8Hourself) Finite differences, interpolation using Newton Gregory forward and Newton Gregory backward difference formulae, Newton's divided difference. Lagrange interpolation formulae, piecewise interpolation-linear and quadratic.	No restriction. Theory) + (4Hours Tutorials) Only problems on mentioned methods without any analysis Inverse Lagrange's interpolation is not a part of the syllabus.	Only numerical problems without analysis.
Module-4: Numerical Methods -	- 1 (8Hours Theory) + (4Hours	Tutorials)
Linear and Bernoulli's differential equations. Exact and reducible to exact differential equations with integrating factors on $\frac{1}{N}(M_y - N_x)$ and	Only introduction of Linear Differential equations. No restriction on other topics.	Problems from linear differential equations should not be asked in SEE as it was already in PUC syllabus.

$\frac{-1}{M}(M_y - N_x)$. Homogeneous			
and non-homogeneous			
Differential equations of higher			
order with constant coefficients.			
Inverse differential operators -			
e^{ax} , $\sin(ax+b)$, $\cos(ax+b)$ and			
x^{n} .			
Module-5: Numerical Integration and Numerical Solution of Differential			
Equations (8Hours Theory + 4Hours Tutorial)			
Numerical integration:	In Modified Euler's method		
Trapezoidal, Simpson's 1/3rd,	Two step problems should be		
Simpson's 3/8th rule and	covered.		
Weddle's rule. Numerical	In Runge-Kutta method of		
solution of ordinary differential	fourth order, only one step to		
equations of first order and first	be covered.		
degree - Taylor's series method,			
Modified Euler's method,			
Runge-Kutta method of fourth			
order and Milne's predictor-			
corrector method.			

Suggested Learning Resources: (Textbook/Reference Book):

Textbooks:

- 1. M.K. Jain, S.R.K. Iyengar and R.K. Jain, *Numerical Methods for Scientific and Engineering Computation*, New Age International Publishers, 8thEd., 2022.
- 2. David C Lay, Linear Algebra and its Applications, Pearson Publishers, 5th Ed., 2023.
- 3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44thEd., 2021.

Reference books:

- 1. V.Ramana, HigherEngineeringMathematics,McGraw-HillEducation,11thEd., 2017
- 2. N. P.BaliandManishGoyal, ATextbookofEngineeringMathematics,Laxmi Publications, 10th Ed., 2022.
- 3. S. S. Sastry, Introductory Methods of Numerical Analysis, PHI Learning Private Limited, 5thEd.2012.
- 4. Steven V. Chapra and Raymond P. Canale, Applied Numerical Methods with Matlab for Engineers and Scientists, McGraw-Hill, 3rd Ed., 2011.
- 5. Richard L. Burden, Douglas J. Faires, A. M. Burden, Numerical Analysis, 10th Edition., 2010, Cengage Publishers.