VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI

SYLLABUS FOR 2018 - 2020

I Semester M.Tech-Mech-(Thermal)

Advanced Mathematical Methods in Engineering

Course Code : 18MTP11	CIE Marks: 40
Contact Hours/Week: 04	SEE Marks: 60
Total Hours: 50	Exam Hours: 03
Semester : I	Credits: 04 (4:0:0)

Course Learning Objectives: This course will enable the students

- To understand the technique of numerically computing for various accuracies in the modeling equations.
- To learn and use the fundamentals of most commonly occurring situations in the form of ODE's and PDE's for real life applications.
- To understand the concepts of probability and testing of hypothesis for a sample data and further general conclusion can be taken to the whole data using statistical methods.

MODULES	No.of Hrs
MODULE-I: Error definition, round off errors and truncation errors. Mathematical modeling and Engineering problem solving: Simple mathematical model, Conservation Laws of Engineering. Roots of Equations by numerical methods: Secant Method, Newton- Raphson	10 Hrs
method, Horner's Method. (RBT Levels: L1 & L2)	
MODULE-II Solving ODE"s using: Picard's method, Runge Kutta f ourth order and Stiffness of ODE using shooting method. Solving PDE's by numerical method: one dimensional wave equation and heat equation (RBT Levels: L1 & L2)	10 Hrs
MODULE-III:	
Sampling Theory: Testing of hypothesis using t andtest, Goodness of fit. (RBT Levels: L1 & L2)	10 Hrs
MODULE IV:	
related to ANOVA, Design of experiments, RBD. (RBT Levels: L2 & L3)	10 Hrs
MODULE-V:Engineering Applications on :i)The swinging Pendulum (Article No:28.4, P.No:793, Ref. 3)ii)Vibrating string(Article No:4.5, P.No: 151, Ref. 2)(RBT Levels: L2 & L4)	10 Hrs

Course Outcomes: At the end of the course, students will demonstrate the ability to:

- 1. Acquire the idea of significant figures, types of errors during numerical computation.
- 2. Develop the mathematical models of thermal system using ODE's and PDE's.
- 3. Learn the deterministic approach for statistical problems by using probability distributions.
- 4. Demonstrate the validity of the hypothesis for the given sampling distribution using standard tests and understand the randomization on design of experiments.
- 5. Classify and analyze mathematical tools applied to thermal engineering study cases.

Question Paper Pattern:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.

- The question paper will have **ten** full questions carrying equal marks.
- Each full question consisting of **20** marks.
- There will be **two** full questions (with a **maximum** of **four** sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer **five** full questions, selecting **one** full question from each module.

Text Books:

- 1. C. Ray Wylie and Louis C Barrett, "Advanced Enginee ring Mathematics". 6th edition, McGraw-Hill, 1995.
- 2. K Shankar Rao, "Introduction to Partial Differentia l Equations" Prentice Hall of India Pvt. Lt. , 1995 Edition.
- 3. Steven C Chapra and Raymond P Canale, "Numerical Me thods for Engineers," 7th Ed., McGraw-Hill Edition, 2015.

Reference books:

- 1. William W.H., Douglas C.M., David M.G.and Connie M.B., "Probability and Statistics in Engineering, 4th Edition, Willey Student edition, 2008.
- 2. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 44th Ed., 2017.
- 3. M K Jain, S.R.K Iyengar, R K. Jain, Numerical methods for Scientific and engg computation, New Age International, 2003.

Web links and Video Lectures:

- 1. <u>http://nptel.ac.in/courses.php?disciplineId=111</u>
- 2. http://www.class-central.com/subject/math(MOOCs)
- 3. <u>http://ocw.mit.edu/courses/mathematics/</u>