VISVESVARAYA TECHNOLOGICAL UNIVERSITY BELAGAVI

Scheme of Teaching and Examination and Syllabus M.Tech in

COMPUTER APPLICATION IN INDUSTRIAL DRIVES (ECD) Eligibility: Bachelor's degree in Engineering or Technology in

(a)Electrical and Electronics Engineering (b) AMIE in appropriate branch (c) GATE: EE

(Effective from Academic year 2018-19)

Outcome Based Education(OBE) and Choice Based Credit System (CBCS)

I SEMESTER

				Teaching 1	Hours /Week		Exam	ination		
Sl. No	Course	Course Code	Course Title	Theory	Practical/ Field work/ Assignment	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	PCC	18EEE11	Mathematical Methods in Control	04		03	40	60	100	4
2	PCC	18ECD12	Advanced Control Systems	04		03	40	60	100	4
3	PCC	18ECD13	Power Electronic Converters	04		03	40	60	100	4
4	PCC	18ECD14	AC and DC Drives - 1	04		03	40	60	100	4
5	PCC	18ECD15	Modelling and Analysis of Electrical Machines	04		03	40	60	100	4
6	PCC	18ECDL16	Drives Laboratory-1	-	04	03	40	60	100	2
7	PCC	18RMI17	Research Methodology and IPR	02		03	40	60	100	2
	TOTAL 22 04 21 280 420 700 24									

Note: PCC: Professional core.

Internship: All the students have to undergo mandatory internship of 6 weeks during the vacation of I and II semesters and /or II and III semesters. A University examination shall be conducted during III semester and the prescribed credit shall be counted for the same semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared as failed and have to complete during the subsequent University examination after satisfying the internship requirements.

Outcome Based Education(OBE) and Choice Based Credit System (CBCS)

II SEMESTER

				Teaching I	Iours /Week		Exam	ination		
Sl. No	Course	Course Code	Course Title	Theory	Practical/ Field work/ Assignment	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	PCC	18ECD21	AC and DC Drives - 2	04		03	40	60	100	4
2	PCC	18ECD22	DSP Applications to Drives	04		03	40	60	100	4
3	PCC	18ECD23	Modelling and Design Of Controllers	04		03	40	60	100	4
4	PEC	18ECD24X	Professional elective 1	04		03	40	60	100	4
5	PEC	18ECD25X	Professional elective 2	04		03	40	60	100	4
6	PCC	18ECDL26	Drives Laboratory-2		04	03	40	60	100	2
7	PCC	18ECD27	Technical Seminar		02		100		100	2
		TO	TAL	20	06	18	340	360	700	24

Note: PCC: Professional core, PEC: Professional Elective.

Profe	ssional Elective 1		Professional Elective 2
Course Code under 18ECD24X Course title		Course Code under 18ECD25X	Course title
18ECD241	Special Electrical Machines	18ECD251	Predictive Control of Drives
18ECD242	Process Control and Instrumentation	18ECD252	Electric Drive Design
18ECD243	EMC in Power Electronics	18ECD253	Hybrid Electric Vehicles

Vector Control of Three-Phase AC Machines

Note:

1. Technical Seminar: CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide/co-guide, if any, and a senior faculty of the department. Participation in the seminar by all postgraduate students of the same and other semesters of the programme shall be mandatory.

The CIE marks awarded for Technical Seminar, shall be based on the evaluation of Seminar Report, Presentation skill and Question and Answer session in the ratio 50:25:25.

2. Internship: All the students shall have to undergo mandatory internship of 6 weeks during the vacation of I and II semesters and /or II and III semesters. A University examination shall be conducted during III semester and the prescribed credit shall be counted in the same semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared as failed and have to complete during the subsequent University examination after satisfying the internship requirements.

Outcome Based Education(OBE) and Choice Based Credit System (CBCS)

III SEMESTER

				Teaching 1	Hours /Week		Exam	ination		
Sl. No	Course	Course Code	Course Title	Theory	Practical/ Field work/ Assignment	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	PCC	18ECD31	Digital Power Electronics	04		03	40	60	100	4
2	PEC	18ECD32X	Professional elective 3	04		03	40	60	100	4
3	PEC	18ECD33X	Professional elective 4	04		03	40	60	100	4
4	Project	18ECD34	Evaluation of Project phase -1		02		100		100	2
5	Internship	18ECDI35	Internship	intervening		03	40	60	100	6
TOTAL 12 02 12 260						240	500	20		

Note: PCC: Professional core, PEC: Professional Elective.

	Professional elective 3	Professional elective 4			
304150 1111		Course Code under 18ECD33X	Course title		
18ECD321	Power Quality Problems and Mitigation		PLC Applications in Electric Drives		
18ECD321	FPGA and Programmable Logic		AC drives with inverter Output Filters		
18ECD323	Sensorless AC Motor Control	18ECD333	Sneak Circuits in Converters		

Note:

- 1. Project Phase-1: Students in consultation with the guide/co-guide if any, shall pursue literature survey and complete the preliminary requirements of selected Project work. Each student shall prepare relevant introductory project document, and present a seminar. CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide/co-guide if any, and a senior faculty of the department. The CIE marks awarded for project work phase -1, shall be based on the evaluation of Project Report, Project Presentation skill and Question and Answer session in the ratio 50:25:25.
- SEE (University examination) shall be as per the University norms.
- **2. Internship:** Those, who have not pursued /completed the internship shall be declared as failed and have to complete during subsequent University examinations after satisfying the internship requirements. Internship SEE (University examination) shall be as per the University norms.

Outcome Based Education(OBE) and Choice Based Credit System (CBCS)

IV SEMESTER

		Teaching Ho	ours /Week		Exan	nination				
Sl. No	Course	Course Code	Course Title	Theory	Practical/ Field work/ Assignment	Duration in hours	CIE Marks	SEE Marks Viva voce	Total Marks	Credits
1	Project	18ECD41	Project work phase -2		04	03	40	60	100	20
			TOTAL		04	03	40	60	100	20

Note:

1. Project Phase-2:

CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide/co-guide, if any, and a Senior faculty of the department. The CIE marks awarded for project work phase -2, shall be based on the evaluation of Project Report subjected to plagiarism check, Project Presentation skill and Question and Answer session in the ratio 50:25:25.

SEE shall be at the end of IV semester. Project work evaluation and Viva-Voce examination (SEE), after satisfying the plagiarism check, shall be as per the University norms.

I SEMESRER M.Tech COMPUTER APPLICATIONS IN INDUSTRIAL DRIVES

M.TECH POWER COMPUTER APPLICATION IN INDUSTRIAL DRIVES (ECD) Outcome Based Education(OBE) and Choice Based Credit System (CBCS) **SEMESTER - I** MATHEMATICAL METHODS IN CONTROL (Professional Core Course) 40 Course Code 18EEE11 CIE Marks Number of Lecture Hours/Week Exam Hours 03 04 SEE Marks Total Number of Lecture Hours 50 60 Credits - 04

- To introduce linear algebra in a best suitable approach for solving large number of equations using transformation methods.
- To understand the techniques of numerical methods for estimating high accuracy in finding the roots and, in solving differential equations and their applications. ■

ili sorving	differential equations and their applications.	
Module-1		Teaching Hours
and dependent vec	tor spaces and sub-spaces, definitions, illustrative example. Linearly independent tors- Basis-definition and problems. Linear transformations-definitions. Matrix formations-Illustrative examples.	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding	
Module-2		
Croute's Triangular	ns of Linear Equations: Direct methods-Relaxation method, Partition method, risation method. Eigen values and Eigen vectors. Bounds on Eigen Values. Jacobi nethod for symmetric matrices.	10
Revised Bloom's Taxonomy Level	L_2 – Understanding , L_3 – Applying	
Module-3		
Orthogonal vectors Applications. ■	and orthogonal bases. Gram-Schmidt orthogonalization process. SVD and	10
Revised Bloom's Taxonomy Level	L_2 – Understanding , L_3 – Applying	
Module-4		
	m variables, Probability distributions: Binomial, Poisson, Normal distributions, stribution (discrete and continuous)-Illustrative examples. ■	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding	
Module-5		
	noments, characteristic functions, probability generating and moment generating ons. Poisson, Gaussian and Erlang distributions-examples.	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding	

18EEE11 MATHEMATICAL METHODS IN CONTROL (Professional Core Course) (continued)

Course outcomes:

At the end of the course the student will be able to:

- 1. Understand the fundamentals of vector space and bases in reference to transformations.
- 2. Solve system of linear equations using direct and iterative methods.
- 3. Use the idea of Eigen values and Eigen vectors for the application of SVD.
- 4. Describe the basic notions of discrete and continuous probability distributions.
- 5. Find out responses of linear systems using statistical and probability tools. ■

Graduate Attributes (As per NBA):

Critical Thinking, Problem Solving, Research Skill, Usage of Modern Tools.

Question paper pattern:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.

- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module. ■

Tex	tbooks						
1	Linear Algebra and its Applications	David C.Lay et al	Pearson	5th Edition,2015			
2	Numerical Methods for Scientific and Engineering Computation	M. K. Jain et al	New Age International	9 th Edition, 2014			
Ref	erence Books						
3	Signals, Systems, and Inference	Alan V. Oppenheim and George C. Verghese	Pearson	2012			
4	Numerical methods for Engineers	Steven C Chapra and Raymond P Canale	McGraw-Hill	7 th Edition, 2015			
5	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	44 th Edition, 2017			
7	Web links:1. http://nptel.ac.in/cour.	ses.php?disciplineId=1	<u>11</u>				
	2. <u>http://www.class-central.com/C</u>	Course/math(MOOCs)					
	3. http://ocw.mit.edu/courses/mathematics/						
	-		•				

ADVANCED CONTROL SYSTEMS (Professional Core Course)

ADVANCED CONTROL STSTEMS (Trocessional core course)						
Subject Code	18ECD12	CIE Marks	40			
Number of Lecture Hours/Week	04	Exam Hours	03			
Total Number of Lecture Hours	50	SEE Marks	60			
	G 194 0.4					

Credits - 04

- To impart basic knowledge about digital control through signal conversion, their representation, z transform, stability analysis in the z plane, signal reconstruction .etc.
- Development of models of systems in the digital domain, and their implementation.
- To perform state variable method of analysis of digital control systems.
- To impart knowledge of optimal control system analysis in continuous and discrete time domains.
- To impart knowledge about the analysis of nonlinear control systems.

		_
Module-1		Teaching Hours
Digital Control Sch Domain Models for Frequency Respons Systems, Sampled S	Control System Terminology, Need of Digital control, Configurations of the Basic teme, Principle of Signal Conversion, Basic Discrete − Time Signals, Time Discrete − Time Systems, The z − Transform, Transfer Function Models, the, Stability on the z − Plane and Jury Stability Criterion, Sample and Hold Spectra and Aliasing, Reconstruction of Analog Signals, Practical Aspects of the Rate, Principle of Discretization. ■	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Module-2		
Continuous – time Digital Controllers, Stepping Motors and		10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Module-3		
Processors, State D with Dead Time, So Multivariable Syste Pole Placement De Feedback, Necessar Design, Design of S Introduction of the	alysis of Digital Control Systems: Introduction, State Description of Digital escription of Sampled continuous – Time Plants, State Description of Systems olution of State Difference Equations, Controllability and Observability, ems. esign and State Observers: Introduction, Stability Improvement by State ry and sufficient Conditions for Arbitrary Pole – Placement, State Regulator State Observers, Compensator Design by the Separation Principle, Servo Design – reference Input by Feedforward Control, State Feedback with Integral Control, tems with State Feedback, Deadbeat control by State Feedback and Deadbeat	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Module-4		
Functions for Linear Performance Index,	ll Control: Introduction, The Concept of Lyapunov Stability, Lyapunov ar Systems, Parameter Optimization and Optimal Control Problems, Quadratic Control Configurations, Optimal State Regulator, Optimal Digital Control ed State Feedback Control. ■	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	

18ECD12 ADVANCED CONTROL SYSTEMS

	18ECD12 ADVANCED CONTROL SYSTEMS				
(Professional Core Course) (continued)					
Module-5		Teaching			
		Hours			
nonlinearities in Co Common nonlinear Plane Analysis, Co Variable Structure S	Analysis: Introduction, Common nonlinear System Behaviours, Common ntrol Systems, Describing Function Fundamentals, Describing Function of ities, Stability Analysis by the Describing Function Method, Concept of Phase nstruction of Phase Portraits, System Analysis on the Phase Plane, Simple Systems, Lyapunov Stability Definitions, Lyapunov Stability Theorems, s for Nonlinear Systems.	10			
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.				

Course outcomes:

At the end of the course the student will be able to:

- Evaluate Z transform of a continuous time signal.
- Assess the stability of a system in Z domain.
- Explain the process of reconstructing the analog signal from a digital signal.
- Model the digital systems to analyze them in the digital domain.
- Use state variable representation to design control law and observers for a system in both continuous and discrete time domains.
- Solve optimal control problems.
- Construct Lyapunov functions to evaluate the stability of a system.
- Use describing function, phase plane methods and Lyapunov method to assess the stability of the nonlinear system. ■

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Design / development of solutions, Modern Tool Usage, Ethics.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

Text/Reference Books

1	Digital Control and State Variable	M Gopal	Mc Graw Hill	3 rd Edition,2008
	Methods (Conventional and			
	Intelligent Control Systems)			
2	Discrete – Time Control Systems	Katsuhiko Ogata	Pearson	2 nd Edition, 2015
3	Digital Control Systems	Benjamin C Kuo	Oxford	2 nd Edition,2007
			University Press	
4	Control System Engineering	I.J. Nagrath	New Age	5 th Edition, 2007
		M.Gopal	International	
	l			

60

M.TECH POWER COM	PUTER APPLICATION	IN INDUSTRIAL DR	RIVES (ECD)		
Outcome Based Educ	cation(OBE) and Choice	Based Credit System	(CBCS)		
	SEMESTER - I				
POWER ELECTI	RONIC CONVERTERS	Professional Core Co	ourse)		
Subject Code 18ECD13 CIE Marks 40					
Number of Lecture Hours/Week	04	Exam Hours	03		

Credits - 04

SEE Marks

Course objectives:

Total Number of Lecture Hours

- To impart knowledge of PWM techniques in controlling the converter operation.
- To impart knowledge of designing and analyzing DC DC PWM converters and control modules.

50

- To impart knowledge of designing and analyzing DC AC and AC DC converters.
- To impart knowledge of analyzing different types of resonant converters and their control.
- To impart knowledge of AC –AC converters and multilevel controllers. ■

Module-1		Teaching Hours
Galvanically Isolate of the Output Vo Discontinuous Mod Discontinuous Mod (Symmetric) Conve Selection of Compo Hamilton Circuit, Ć Isolation. ■	werters: Forward Converters - Analysis of the Basic Circuit, and Forward Converter, Boost Converter - Analysis of the Basic Scheme, Variation of tage, Boundary Between the Continuous and the Discontinuous Mode, and Power Losses, Indirect Converter - Boundary Between the Continuous and the e, Discontinuous Mode, Indirect Converter with Galvanic Separation, Push – Pull reters - Analysis of Idealized Circuit in Continuous Mode, Output Characteristics, nents, DC Premagnetization of the Core, Half-Bridge Converter, Bridge Converter, Puk Converters - Elimination of the Current Ripple, Ćuk Converters with Galvanic	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Module-2		
Simple PWM, Volta Modules - Control M DC/AC Converters Pulse-Width Modul Asynchronous PWM	Basic Principles and Characteristics of PWM Control Modules - Circuit Analysis, age-Controlled PWM, Current-Controlled PWM- Compensated PWM, IC Control Module TL494, Control Module SG1524/2524/3524, Control Module TDA 1060. s – Inverters: Single-Phase Voltage Inverters - Pulse-Controlled Output Voltage, ated Inverters - Unipolar PWM, Three-Phase Inverters - Overmodulation (ma > 1), M, Space Vector Modulation - Space Vector Modulation: Basic Principles, ce Vector Modulation Technique, Direct and Inverse Sequencing, Real Drive	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Module-3		
AC/DC Converter Commutation of Cu Voltage Doublers, Rectifiers, Three-Pl for Power Factor C PWM Rectifiers - A	rent, Output Filters - Capacitive Filter, L Filter, Three-Phase Rectifiers, Phase Controlled Rectifiers - Full-Wave Thyristor hase Thyristor Bridge Rectifiers, Twelve-Pulse Rectifiers, Rectifiers with Circuit correction, Active Rectifier - Active Rectifier with Hysteresis Current Controller, Advanced Control Techniques of PWM Rectifiers, Applications of PWM filters in Active Filters, Some Topologies of PWM Rectifiers, Applications of PWM	10
Revised Bloom's Taxonomy Level	L_2 – Understanding, L_3 – Applying, L_4 – Analysing, L_5 – Evaluating.	
Module-4		
Converters, Paralle	ters: Resonant Circuits - Resonant Converters of Class D, Series Resonant l Resonant Converters, Series - Parallel Resonant Converter, Series Resonant n GTO Thyristors, Class E Resonant Converters, DC/DC Converters Based on	10

18ECD13 POWER ELECTRONIC CONVERTERS

(Professional Core Course) (continued)

Module-4 (continued)	Teaching Hours
Resonant Converters (continued): Resonant Switches - ZCS Quasi-resonant Converters, ZVS Quasi-resonant Converters, Multiresonant Converters, ZVS Resonant DC/AC Converters, Soft Switching PWM DC/DC Converters -Phase Shift Bridge Converters, Resonant Transitions PWM Converters, Control Circuits of Resonant Converters - Integrated Circuit Family UCx861-8, Integrated Circuits for Control of Soft, Switching PWM Converters. ■	
Revised Bloom's L ₁ - Remembering, L ₂ - Understanding, L ₃ - Applying, L ₄ - Analysing.	
Module-5	
AC/AC Converters: Single-Phase AC/AC Voltage Converters - Time Proportional Control Three-Phase Converters, Frequency Converters, Direct Frequency Converters, Introduction to AC/AC Matrix Converters - Basic Characteristics, Bidirectional Switches, Realization of Input Filter, Current Commutation, Protection of Matrix Converter, Application of Matrix Converter. Introduction to Multilevel Converters: Basic Characteristics -Multilevel DC/DC Converters, Time Interval: nT < t < nT + DT, n = 0, 1, 2,Time Interval: nT + DT < t < (n + 1)T, Multilevel Inverters - Cascaded H-Bridge Inverters, Diode-Clamped Multilevel Inverters, Flying Capacitor Multilevel Inverter, Other Multilevel Inverter Topologies, Control of Multilevel Inverters - Multilevel SPWM, Space Vector Modulation, Space Vector Control, Selective Harmonic Elimination. ■	10

Course outcomes:

Revised Bloom's

Taxonomy Level

At the end of the course the student will be able to:

- Use the knowledge of PWM techniques in controlling different power electronic converters.
- Apply the knowledge of power electronics in design and analysis of DC –DC PWM converters.
- Design and analyze DC –AC and AC DC converters and control their operation using PWM techniques.

 L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.

- Design and analyze different resonant converters and their control circuits.
- Analyze AC AC converters and multilevel converters. ■

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem analysis.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

Text/	Text/Reference Books					
1	Power Electronics Converters and Regulators	Branko L. Doki ć Branko Blanu š a	Springer (International Publishing, Switzerland)	3 rd Edition, 2015		
2	Power Electronics Converters, Applications, and Design	Ned Mohan et al	Wiley	3 rd Edition,2014		

AC and DC DRIVES - 1 (Professional Core Course)				
Subject Code	18ECD14	CIE Marks	40	
Number of Lecture Hours/Week	04	Exam Hours	03	
Total Number of Lecture Hours	50	SEE Marks	60	
Credits - 04				

- To impart knowledge on mathematical Modeling of DC machine and phase control of DC motor drives.
- To explain controlling of DC motor by Choppers.
- Mathematical modeling of poly phase induction motor for controlling the speed by phase control.
- To impart knowledge on control of induction motor drives through frequency. ■

• 10 impart kno	wreage on control of induction motor drives unough frequency.	
Module-1		Teaching Hours
Modelling of DC Electromagnetic To Excitation, Measure Phase – Controlled	Devices and Drives: Introduction, Power Devices and Switching, Motor Drives. C Machines: Theory of Operation, Induced emf, Equivalent Circuit and rque, Electromechanical Modelling, Block Diagram and Transfer Functions, Field ement of Motor Constants, Flow chart for Computation. d DC Motor Drives: Introduction, Principles of DC motor Speed Control, Phase ers, Steady - State Analysis of the Three Phase Controlled DC Motor Drives.	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Module-2		
Motor Drive, Transl Drive with Field Characteristics, Sin Problems, Sixth Ha Chopper – Contro Quadrant Chopper (Chopper, Input to	d DC Motor Drives (continued): Two – Quadrant Three Phase Controlled DC fer Functions of the Subsystems, Design of Controllers, Two – Quadrant DC Motor Weakening, Four – Quadrant DC Motor Drive, Converter Selection and nulation of the One – Quadrant DC Motor Drive, Harmonics and Associated rmonic Torque, Application Considerations, Applications, Parameter Sensitivity. olled DC Motor Drive: Introduction, Principle of operation of Chopper, Four – Circuit, Chopper for Inversion, Chopper with Other Power Devices, Model of the the Chopper, Other Chopper Circuits, Steady – State Analysis of Chopper – or Drive, Rating of the Devices. ■	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Module-3		
Dynamic Simulation PolyPhase Inducti Motor Equivalent C	lled DC Motor Drive (continued): Pulsating Torques, Closed – Loop Operation, n, Applications. on Machines: Introduction, Construction and Principle of Operation, Induction ircuit, Steady - State Performance Equations of the Induction Motor, Steady - State urement of Motor of Induction Motor, Dynamic Modelling of Induction Motor. ■	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Module-4	,	
Induction Machine, Model, Control Prin	Induction Motor Drives: Introduction, Stator – Voltage Conrtaol, Slip – Energy	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	

18ECD14 AC and DC DRIVES - 1

(Professional Core Course) (continued)		
Module-5		Teaching
		Hours
Frequency - Contr	rolled Induction Motor Drives: Introduction, Static Frequency Changers, Voltage	10
Source Inverter – D	riven Induction Motor. ■	
D : 1 D1 1	T T 1 T TT 1 . 1' T A 1 ' T A 1 '	
Revised Bloom's	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Taxonomy Level		
Taxonomy Level		

Course outcomes:

At the end of the course the student will be able to:

- Discuss the motor –drive applications, the status of power devices, classes of electrical machines, power converters, controller s and mechanical systems.
- Discuss the principle of operation, steady state and dynamic modeling, block diagram development and measurement of dc motor parameters.
- Describe phase controlled dc motor for variable –speed operation.
- Describe chopper controlled dc motor for variable –speed operation.
- Discuss the principle of operation, steady state and dynamic modeling, block diagram development of induction motor.
- Explain the concepts of space phasor modeling.
- Discuss two methods of speed control of induction motor; stator –phase control and slip –energy recovery control.
- Discuss variable frequency control of induction machines with both variable voltage and variable current.

Graduate Attributes (As per NBA):

 $Engineering\ Knowledge,\ Problem\ Analysis,\ Design\ /\ development\ of\ solutions,\ Ethics.$

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

Textbook

1	Electric Motor Drives : Modelling, Analysis, and Control	R. Krishnan	Pearson	2016
				•

M.TECH POWER ELECTRONICS (EPE) Outcome Based Education(OBE) and Choice Based Credit System (CBCS) SEMESTER - I

MODELLING AND ANALYSIS OF ELECTRICAL MACHINES (Professional Core Course)

Subject Code	18EPE15	CIE Marks	40
Number of Lecture Hours/Week	04	Exam Hours	03
Total Number of Lecture Hours	50	SEE Marks	60

Credits - 04

- To provide basic concepts of modelling of dc and ac machines.
- To provide knowledge of theory of transformation of three phase variable to two phase variable.
- To analyze the steady state and dynamic state operation of three-phase induction machines using transformation theory based mathematical modelling.
- To provide modeling concepts of single phase and three phase transformers.
- To analyze the steady state and dynamic state operation of three-phase synchronous machines using transformation theory based mathematical modelling. ■

Module-1		Teaching Hours
phase synchronous n primitive machine-vo DC Machine Mode transient state analysi	Modelling: Basic two pole machine representation of commutator machines, 3-nachine with and without damper bar and 3-phase induction machine, Kron's oltage, current and torque equations. Illing: Mathematical model of separately excited DC motor-steady state and is, sudden application of inertia load, transfer function of separately excited DC model of dc series motor, shunt motor, linearization techniques for small	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Module-2		
obtain constant matric Dynamic Modelling electromagnetic torque model, rotor reference	heory: Real time model of a two phase induction machine, transformation to ces, three phase to two phase transformation, power equivalence. g of Three Phase Induction Machine: Generalized model in arbitrary frame, the, deviation of commonly used induction motor models-stator reference frames the frames model, synchronously rotating reference frames model, equations in flux del, dynamic simulation. ■	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Module-3		
machine, space phase motor. Transformer Model connections, per phase change of base, per un	ons of the Induction Machine: Derivation of small signal equations of induction or model, DQ flux linkages model derivation, control principle of the induction lling: Introduction, single phase transformer model, three phase transformer e analysis, normal systems, per unit normalization, per unit three phase quantities, nit analysis of normal system, regulating transformers for voltage and phase angle mers, transmission line and transformers.	10
Revised Bloom's Taxonomy Level	L_2 – Understanding, L_3 – Applying, L_4 – Analysing, L_5 – Evaluating.	
Module-4		
machine variables, st equations, torque equ	hronous Machines: Introduction, voltage equations and torque equation in actor voltage equations in arbitrary and rotor reference frame variables, Park's uations in substitute variables, rotor angle and angle between rotors, per unit eady state operation.	10
system, analysis of st		

M.TECH POWER ELECTRONICS (EPE) Outcome Based Education(OBE) and Choice Based Credit System (CBCS)

SEMESTER - I

18EPE15 MODELLING AND ANALYSIS OF ELECTRICAL MACHINES (Professional Care Course) (continued)

	(Professional Core Course) (continued)	
Module-5		Teaching
		Hours
torque and during a angle characteristic during a sudden cha approximate transie	of Synchronous Machines: Dynamic performance during sudden change in input a 3-phase fault at the machine terminals, approximate transient torque versus rotor s, comparison of actual and approximate transient torque-angle characteristics ange in input torque; first swing transient stability limit, comparison of actual and ent torque-angle characteristics during a 3-phase fault at the machine terminals, e, equal area criterion, computer simulation.	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	

Course outcomes:

At the end of the course the student will be able to:

- Explain the basic concepts of modeling.
- Develop mathematical models for DC motors for transient state analysis.
- Use reference frame theory to transform three phase to two phase.
- Develop dynamic model for three phase induction motor in stator ad rotor reference frames.
- Develop mathematical model of single phase transformers.
- Model synchronous machine using Park's transformation for the analysis of steady state operation.
- Model synchronous machine to perform dynamic analysis under different conditions.

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Design / development of solutions, Conduct investigations of complex Problems, Modern Tool Usage, Ethics,

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

Text/Reference Books

1	Generalized Theory of Electrical Machines	P.S.Bimbra	Khanna Publications	5th Edition,1995
2	Electric Motor Drives - Modelling, Analysis & Control	R. Krishnan	PHI Learning Private Ltd	Indian Edition, 2009
3	Analysis of Electrical Machinery and Drive Systems	P.C.Krause, et al	Wiley	2nd Edition,2010
4	Power System Analysis	Arthur R Bergen and Vijay Vittal	Pearson	2 nd Edition,2009
5	Power System Stability and Control	Prabha Kundur	Mc Graw Hill	1st Edition,1994
6	Dynamic Simulation of Electric Machinery using Matlab / Simulink	Chee-Mun Ong	Prentice Hall	1998

SEMESTER - I

DRIVES LABORATORY -1				
Subject Code	18ECDL16	CIE Marks	40	
Number of Practical Hours/Week	04	Exam Hours	03	
Total Number of Practical Hours	56	SEE Marks	60	

Credits - 02

Course objectives:

- To conduct experiment on various power electronic devices to analyze their static and dynamic characteristics.
- To conduct experiments and enhance understanding of different power electronic converters.

Sl. NO	Experiments		
1	Analysis of static and dynamic characteristic of SCR, TRIAC.		
2	Analysis of static and dynamic characteristic of MOSFET and IGBT.		
3	Performance of single phase fully controlled and semi-controlled converter for RL load for continuous current mode.		
4	Performance of single phase fully controlled and semi-controlled converter for RL load for discontinuous current mode.		
5	Study of effect of source inductance on the performance of single phase fully controlled converter.		
6	Performance analysis of three phase fully controlled and semi-controlled converter for RL load for continuous current mode.		
7	Performance analysis of three phase fully controlled and semi-controlled converter for RL load for discontinuous current mode.		
8	Performance analysis of single phase bridge inverter for RL load and voltage control by single pulse width modulation.		
9	Performance analysis of two quadrant chopper.		
10	ZVS operation of a Synchronous buck converter.		
	ed Bloom's L ₃ – Applying, L ₄ – Analysing, L ₅ – Evaluating, L ₆ – Creating		

Course outcomes:

At the end of the course the student will be able to:

- Analyze the static and dynamic characteristics of various semiconductor devices.
- Apply the knowledge of converters in assessing the performance of single phase and three phase fully controlled and semi controlled converters for RL load for continuous current modes.
- Apply the knowledge of converters in assessing the performance of single phase and three phase fully controlled and semi controlled converters for RL load for discontinuous current modes.
- Assess the performance of single phase bridge inverter for RL load and control the voltage by pulse width modulation.
- Apply the knowledge of power electronics in performance analysis of chopper and synchronous buck converter.

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Conduct investigations of complex Problems, Modern Tool Usage, Individual and Team work, Communication.

RESEARCH METHODOLOGY AND IPR

(Professional Core Course) and (Common to all M.Tech Programmes)				
Course Code	18RMI17	CIE Marks	40	
Number of Lecture Hours/Week	02	Exam Hours	03	
Total Number of Lecture Hours	25	SEE Marks	60	

Credits - 02

- To give an overview of the research methodology and explain the technique of defining a research problem
- To explain the functions of the literature review in research.
- To explain carrying out a literature search, its review, developing theoretical and conceptual frameworks and writing a review.
- To explain various research designs and their characteristics.
- To explain the details of sampling designs, measurement and scaling techniques and also different methods of data collections.
- To explain several parametric tests of hypotheses and Chi-square test.
- To explain the art of interpretation and the art of writing research reports.
- To explain various forms of the intellectual property, its relevance and business impact in the changing global business environment.
- To discuss leading International Instruments concerning Intellectual Property Rights.

		Teaching Hours
Research, Types of versus Methodology Research Process, C Defining the Resea	logy: Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Research Approaches, Significance of Research, Research Methods , Research and Scientific Method, Importance of Knowing How Research is Done, riteria of Good Research, and Problems Encountered by Researchers in India. □ Problem: Research Problem, Selecting the Problem, Necessity of Defining que Involved in Defining a Problem, An Illustration. ■	05
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding.	
Module-2		
research problem, I Enabling contextual the selected literatu Writing about the lit	ature: Place of the literature review in research, Bringing clarity and focus to your improving research methodology, Broadening knowledge base in research area, findings, How to review the literature, searching the existing literature, reviewing are, Developing a theoretical framework, Developing a conceptual framework, rerature reviewed. Meaning of Research Design, Need for Research Design, Features of a Good	05
	Concepts Relating to Research Design, Different Research Designs, Basic mental Designs, Important Experimental Designs. ■	
	Concepts Relating to Research Design, Different Research Designs, Basic	
Principles of Experi	Concepts Relating to Research Design, Different Research Designs, Basic mental Designs, Important Experimental Designs. ■	

18RMI17 RESEARCH METHODOLOGY AND IPR

TORWITT RESEARCH WETHODOLOGI AND II K			
(Professional Core Course) and (Common to all M.Tech Programmes)			
Module-4	Teaching		
	Hours		
Testing of Hypotheses: Hypothesis, Basic Concepts Concerning Testing of Hypotheses, Testing of	05		
Hypothesis, Test Statistics and Critical Region, Critical Value and Decision Rule, Procedure for			
Hypothesis Testing, Hypothesis Testing for Mean, Proportion, Variance, for Difference of Two Mean,			
for Difference of Two Proportions, for Difference of Two Variances, P-Value approach, Power of Test,			
Limitations of the Tests of Hypothesis.			
Chi-square Test: Test of Difference of more than Two Proportions, Test of Independence of Attributes,			
Test of Goodness of Fit, Cautions in Using Chi Square Tests. ■			
Revised Bloom's L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.			
Taxonomy Level			
Module-5			
Interpretation and Report Writing: Meaning of Interpretation, Technique of Interpretation,	05		
Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout			
of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report,			
Precautions for Writing Research Reports.			
Intellectual Property: The Concept, Intellectual Property System in India, Development of TRIPS			
Complied Regime in India, Patents Act, 1970, Trade Mark Act, 1999, The Designs Act, 2000, The			
Geographical Indications of Goods (Registration and Protection) Act1999, Copyright Act,1957,The			
Protection of Plant Varieties and Farmers' Rights Act, 2001, The Semi-Conductor Integrated Circuits			
Layout Design Act, 2000, Trade Secrets, Utility Models, IPR and Biodiversity, The Convention on			
Biological Diversity (CBD) 1992, Competing Rationales for Protection of IPRs, Leading International			
Instruments Concerning IDP World Intellectual Property Organization (WIPO) WIPO and WTO			

Geographical Indications of Goods (Registration and Protection) Act1999, Copyright Act,1957, The Protection of Plant Varieties and Farmers' Rights Act, 2001, The Semi-Conductor Integrated Circuits Layout Design Act, 2000, Trade Secrets, Utility Models, IPR and Biodiversity, The Convention on Biological Diversity (CBD) 1992, Competing Rationales for Protection of IPRs, Leading International Instruments Concerning IPR, World Intellectual Property Organisation (WIPO), WIPO and WTO, Paris Convention for the Protection of Industrial Property, National Treatment, Right of Priority, Common Rules, Patents, Marks, Industrial Designs, Trade Names, Indications of Source, Unfair Competition, Patent Cooperation Treaty (PCT), Advantages of PCT Filing, Berne Convention for the Protection of Literary and Artistic Works, Basic Principles, Duration of Protection, Trade Related Aspects of Intellectual Property Rights(TRIPS) Agreement, Covered under TRIPS Agreement, Features of the Agreement, Protection of Intellectual Property under TRIPS, Copyright and Related Rights, Trademarks, Geographical indications, Industrial Designs, Patents, Patentable Subject Matter, Rights Conferred, Exceptions, Term of protection, Conditions on Patent Applicants, Process Patents, Other Use without Authorization of the Right Holder, Layout-Designs of Integrated Circuits, Protection of Undisclosed Information, Enforcement of Intellectual Property Rights, UNSECO.

Revised Bloom's Taxonomy Level L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.

Course outcomes:

At the end of the course the student will be able to:

- Discuss research methodology and the technique of defining a research problem
- Explain the functions of the literature review in research, carrying out a literature search, developing theoretical and conceptual frameworks and writing a review.
- Explain various research designs and their characteristics.
- Explain the details of sampling designs, measurement and scaling techniques and also different methods of data collections
- Explain several parametric tests of hypotheses and Chi-square test.
- Explain the art of interpretation and the art of writing research reports
- Discuss various forms of the intellectual property, its relevance and business impact in the changing global business environment and leading International Instruments concerning IPR.

18RMI17 RESEARCH METHODOLOGY AND IPR

(Professional Core Course) and (Common to all M.Tech Programmes)

Graduate Attributes (As per NBA): Problem analysis, Investigation, Design, Individual and teamwork, Communication skills, Professionalism.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

Гех	xtbooks			
1	Research Methodology: Methods and Techniques	C.R. Kothari, Gaurav Garg	New Age International	4 th Edition, 2018
2	Research Methodology a step-by-step guide for beginners. (For the topic Reviewing the literature under module 2)	Ranjit Kumar	SAGE Publications Ltd	3 rd Edition, 2011
3	Study Material (For the topic Intellectual Property under module 5)	Professional Programme Intellectual Property Rights, Law and Practice, The Institute of Company Secretaries of India, Statutory Body Under an Act of Parliament, September 2013		
Ref	ference Books			
1	An introduction to Research Methodology	Garg B.L et al	RBSA Publishers	2002
2	An Introduction to Multivariate Statistical Analysis	Anderson T.W	Wiley	3 rd Edition, 2003
3	Research Methodology	Sinha, S.C, Dhiman	Ess Ess Publications	2002
4	Research Methods: the concise knowledge base	Trochim	Atomic Dog Publishing	2005
5	How to Write and Publish a Scientific Paper	Day R.A	Cambridge University Press	1992
6	Conducting Research Literature Reviews: From the Internet to Paper	Fink A	Sage Publications	2009
7	Proposal Writing	Coley S.M. Scheinberg, C.A	Sage Publications	1990
8	Intellectual Property Rights in the Global Economy	Keith Eugene Maskus	Institute for International Economics	2000

II SEMESRER M.Tech COMPUTER APPLICATIONS IN INDUSTRIAL DRIVES

AC AND DC DRIVES - 2 (Professional Core Course)

THE THIRD BE BILLY LIB 2 (Trotessional core course)					
Course Code	18ECD21	CIE Marks	40		
Number of Lecture Hours/Week	04	Exam Hours	03		
Total Number of Lecture Hours	50	SEE Marks	60		
C 14 04					

Credits - 04

- To explain the design aspects of current source induction motor drives. The principle of direct and
 indirect vector control, their derivations, control schemes and their implementations and tuning of vector
 controllers.
- To explain the analysis of indirect vector controlled induction motor drive, design of controller and applications of indirect vector controlled induction motor drives.
- To explain the operation of permanent magnet synchronous motor and its control strategies, flux weakening operation and design of speed controller for permanent magnet synchronous motor.
- To model and analyze and simulate permanent magnet brushless DC motor.
- To explain the basic concepts, operating principles and control of switched reluctance drives.
- To explain the use of artificial intelligence techniques for intelligent control of Power Electronics and to discuss the design methods along with some applications. ■

	design methods along with some applications.	T m 1 ·
Module-1		Teaching Hours
Applications. Vector Controlled Derivation of Indire an Indirect Vector (Motor Drives: Current Source Induction Motor Drives, Motor Drives: Introduction, Principal of Vector Control, Direct Vector Control, ect Vector Control Scheme, Indirect Vector - Control Scheme, Implimentation of Control Scheme, Tunig of the Vector Controller, Flow Chart for Dynamic mic Simulation Results. ■	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding.	
Module-2		
Controlled Induction Speed – controller I and Applications. Permanent – Magnature Characteristics, Syr	Motor Drives (continued): Parameter Sensitivity of the Indirect Vector − n Motor Drive, Parameter Sensitivity Compensation, Flux Weaking Operation, Design for an Indirect Vector − Controlled Induction Motor Drive, Performance net Synchronous Motor: Introduction, Permanent Magnet (PM) and achronous Machines with PMs, Vector Control of PM Synchronous Motor. ■	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding.	
Module-3		
Operation, Speed C	net Synchronous Motor (continued): Control Strategies, Flux Weakening Controller Design, Sensorless Control, Parameter Sensitivity. Motor (PMBDCM) – Modelling of PMBDCM, Drive scheme, Dynamic	10
Revised Bloom's Taxonomy Level	L_1 - Remembering, L_2 - Understanding, L_3 - Applying, L_4 - Analysing.	
Module-4		
	ace Drive Systems: Basic Machine Concepts, Operating Principles, Multi-Phase of Switched Reluctance Drives, Switched Reluctance Demonstration Machine.	10

18ECD21 AC AND DC DRIVES - 2

	(Professional Core Course) (continued)	
Module-5		Teaching Hours
Expert System, Fu Fuzzy Logic, Neura	zzy Logic, and Neural networks for Drives: Introduction, Expert System, al Network. ■	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding.	

Course outcomes:

At the end of the course the student will be able to:

- Explain the design and operational aspects of current source induction motor drives; vector controlled motor drives, their control schemes and their implementation and tuning of controllers.
- Explain controlling techniques for the induction motor.
- Design speed controllers for indirect vector controlled induction motor drive.
- Assess the performance of the drive and its parameter sensitivity.
- Explain the operation of permanent magnet synchronous motor, its control strategies and design of speed controller for it.
- Model, permanent magnet brushless DC motor for its analysis.
- Explain the basic concepts, operating principles and control of switched reluctance drives.
- Apply artificial intelligence techniques; expert system, fuzzy logic and neural networks for the control of drives. ■

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Design / development of solutions, Modern Tool Usage.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module.

Text/Reference Books

1	Electric Motor Drives: Modelling: Analysis, and Control	R. Krishnan	Pearson	2016
2	Advanced Electrical Drives Analysis, Modelling, Control	Rik De Doncker Duco W.J. Pulle André Veltman	Springer	2011
3	Power Electronics and Variable Frequency Drives Technology and Applications	Bimal K. Bose	Wiley	Reprint 2013

SEMESTER - II

DSP APPLICATIONS TO DRIVES (Professional Core Course)					
Course Code	18ECD22	CIE Marks	40		
Number of Lecture Hours/Week	04	Exam Hours	03		
Total Number of Lecture Hours	50	SEE Marks	60		
Credits - 04					

- To explain the architectural features of TMSLF2407 DSP processor, its peripherals.
- To explain C2xxDSP CPU, its components and instruction set, and the peripheral interface.
- To explain General Purpose Input /Output (GPIO) Functionality, interrupts on TMS320LF2407 and the Analog to digital conversion (ADC).
- To describe the capability of event managers of DSP.
- To explain the implementation of DC DC converters and control of stepper motor permanent magnet brushless DC Motor using DSP and perform Clarke's and Park's transformations on DSP processor.

• Discuss spa	ace vector pulse width modulation technique and the DSP based control of motors.	
Module-1		Teaching Hours
Types of Physical M C2xx DSP CPU and Components of the C Interface, System C	TMSLF2407 DSP Controller: Introduction, Brief Introduction to Peripherals, Iemory, Software Tools. d Instruction Set: Introduction to the C2xx DSP Core and Code Generation, The C2xx DSP Core, Mapping External Devices to the C2xx Core and the Peripheral Configuration Registers, Memory, Memory Addressing Modes, Assembly the C2xx DSP Instruction Set. ■	10
Revised Bloom's Taxonomy Level Module-2	L_1 – Remembering, L_2 – Understanding.	
General Purpose In Purpose I/O Overvie Purpose I/O Ports, C Interrupts on the T Control Registers, In	nput /Output (GPIO) Functionality: Pin Multiplexing (MUX) and General ew, Multiplexing and General Purpose I/O Control Registers, Using the General Purpose I/O Exercise. CMS320LF2407: Introduction to Interrupts, Interrupt Hierarchy, Interrupt initializing and Servicing Interrupts in Software, Interrupt Usage Exercise. Chapter (ADC): ADC Overview, Operation of the ADC, Analog to sage Exercise. ■	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding.	
Module-3		l
Interrupts, General F	Purpose (GP) Timers, Compare Units, Capture Units and Quadrature Encoded ry, General Event Manager Information, Exercise: PWM Signal Generation. ■ L₁ - Remembering, L₂ - Understanding, L₃ - Applying, L₄ - Analysing.	10
Module-4		
	and the of DC DC Bush Boost Commentant Little Linking Comment	10
Structure, Continuou the Buck-Boost Con Description, Interrup	nentation of DC-DC Buck-Boost Converters: Introduction, Converter us Conduction Mode, Discontinuous Conduction Mode, Connecting the DSP to everter, Controlling the Buck-Boost Converter, Main Assembly Section Code pt Service Routine, The Regulation Code Sequences, Results. I of Stepper Motors: Introduction, The Principle of Hybrid Stepper Motor, The me Stepper Motor Drive System, The Implementation of Stepper Motor Control	10

18ECD22 DSP APPLICATIONS TO DRIVES

(Professional Core Course) (continued)			
Module-4 (contin	nued)	Teaching Hours	
	ol of Permanent Magnet Brushless DC Machines: Introduction, Principles of	10	
-	Corque Generation, BLDC Motor Control System, Implementation of the BLDC		
Motor Control System Using the LF2407.			
Clarke's and Park's Transformations: Introduction, Clarke's Transformation, Park's			
	ansformations between Reference Frames, Field Oriented Control (FOC)		
Transformations, In	nplementing Clarke's and Park's Transformations on the LF240X. ■		
Revised Bloom's L_1 - Remembering, L_2 - Understanding, L_3 - Applying, L_4 - Analysing.			
Taxonomy Level			
Module-5			
Space Vector Pulse Width Modulation: Introduction, Principle of Constant V/Hz Control for			
Induction Motors, Space Vector PWM Technique, DSP Implementation.			
DSP-Based Contro	ol of Permanent Magnet Synchronous Machines: Introduction, The Principle		
	M Control System, Implementation of the PMSM System Using the LF2407.		
	Control of Induction Motors: Introduction, Three-Phase Induction Motor		
1	el of the Three-Phase Induction Motor in Simulink, Reference Frame Theory,		
Induction Motor Model in the Arbitrary q-d-0 Reference Frame, Field Oriented Control, DC			
Machine Torque Control, Field Oriented Control, Direct and Indirect Approaches, Simulation			
	ction Motor Control System, Induction Motor Speed Control System, System		
Components, Imple	mentation of Field-Oriented Speed Control of Induction Motor, Experimental		
Results. ■			

Course outcomes:

Revised Bloom's

Taxonomy Level

At the end of the course the student will be able to:

- Explain the architectural features of TMSLF2407 DSP processor, its peripherals.
- Explain C2xxDSP CPU, its components and instruction set, and the peripheral interface.
- Explain General Purpose Input /Output (GPIO) Functionality, interrupts on TMS320LF2407 and the analog to digital conversion (ADC).

 L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.

- Describe the capability of event managers of DSP.
- Model DC DC converters.
- Perform mathematical modeling and control of different motors using DSP processor.
- Explain space vector pulse width modulation technique used for the control of motors.

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Design / development of solutions, Modern Tool Usage, Individual and Team work, Communication, Lifelong Learning.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

Textb	ook
--------------	-----

1	DSP-Based Electromechanical Motion Control	Hamid A. Toliyat	CRC Press	2004

SEMESTER - II

MODELLING AND DESIGN OF CONTROLLERS (Professional Core Course)					
Course Code	18ECD23	CIE Marks	40		
Number of Lecture Hours/Week 04 Exam Hours 03					
Total Number of Lecture Hours	50	SEE Marks	60		
Cualita 04					

Credits - 04

- To impart knowledge required for modeling and computer simulation of power electronic converters and systems.
- To explain control system essentials in representing system in digital domain.
- To explain the designing of digital controllers by different methods.
- To explain the design and analysis of optimal and robust controllers by different methods.
- To impart knowledge of discrete computation essentials. ■

		Teaching Hours
Computer Simulati Domain Analysis, Modelling of Syste Representation, Tra	tion of Power Electronic Converters and Systems: Introduction, Challenges in on, Simulation Process, Mechanics of Simulation, Solution Techniques for Time-Widely Used, Circuit-Oriented Simulators, Equation Solvers. ems: Input-Output relations, Differential Equations and Linearization, State Space ansfer Function Representation, Block Diagrams, Lagrange method, Circuit Graphs, Space Vector Modelling. \blacksquare $L_1 - \text{Remembering}, L_2 - \text{Understanding}, L_3 - \text{Applying}.$	10
Taxonomy Level Module-2		
Control System E Filter, Mapping ber Conversion, Control	ssentials: Representation of system in digital Domain, The Z − Transform, Digital tween s − plane and z − plane, Effect of Sampling, Continuous to Discrete Domain of System Basics, Control Principles, State - Space Method.	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Module-3		
Root Locus Metho	Design: Controller Design Techniques, Bode Diagram Method, PID Controller, d, State Space Method, Full State Feedback, Regulator Design by Pole Placement, Tracker: Controller Design. ■ L ₁ − Remembering, L ₂ − Understanding, L ₃ − Applying, L ₄ − Analysing.	10
Taxonomy Level		
Module-4		
	r Design (continued): Controlling Voltage, Controlling Current, Control of utput Feedback, Induction motor Control with Output Feedback.	10
Optimal and Rol Energy Principle, I	Dust Controller Design: Least Squares Principle, Quadratic Forms, Minimum Least Square Solution, Weighted Least Squares, Recursive Least Squares, Optimal adratic, Induction motor example, Robust Controller Design. ■	
Optimal and Roll Energy Principle, I	Dust Controller Design: Least Squares Principle, Quadratic Forms, Minimum Least Square Solution, Weighted Least Squares, Recursive Least Squares, Optimal	
Optimal and Rol Energy Principle, I Control: Linear Qu Revised Bloom's	bust Controller Design: Least Squares Principle, Quadratic Forms, Minimum Least Square Solution, Weighted Least Squares, Recursive Least Squares, Optimal adratic, Induction motor example, Robust Controller Design. ■	
Optimal and Rol Energy Principle, I Control: Linear Qu Revised Bloom's Taxonomy Level Module-5	bust Controller Design: Least Squares Principle, Quadratic Forms, Minimum Least Square Solution, Weighted Least Squares, Recursive Least Squares, Optimal adratic, Induction motor example, Robust Controller Design. ■	10

18ECD23 MODELLING AND DESIGN OF CONTROLLERS (Professional Core Course) (continued)

Course outcomes:

At the end of the course the student will be able to:

- Describe the role of computer simulations in the analysis and design of power electronics systems.
- Understand the functional modeling of static systems.
- Use sampling technique to determine a digital equivalent to a continuous time system.
- Understand the control basics of digital systems.
- Design digital controllers in discrete time and frequency domain.
- Design optimal and robust controllers by different methods.
- Explain essentials of discrete computation. ■

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Design / development of solutions, Ethics.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module.

Applications, and Design Tore M. Undeland, William P. Robbins	Text/	Reference Books			
	1	,	Tore M. Undeland,	Wiley	3 rd Edition,2014
	2		L. Umanand	Wiley	1 st Edition,2014

SPECIAL ELECTRICAL MACHINES (Professional Elective Course)					
Subject Code 18ECD241 CIE Marks 40					
Number of Lecture Hours/Week	04	Exam Hours	03		
Total Number of Lecture Hours	50	SEE Marks	60		
G 114 0A					

Credits - 04

- To impart knowledge on the Construction, principle of operation, control and performance of stepping
- To impart knowledge on the Construction, principle of operation, control and performance of switched reluctance motors and permanent magnet brushless D.C. motors.
- To impart knowledge on the Construction, principle of operation and performance of permanent magnet synchronous motors and synchronous reluctance motor.
- To impart knowledge on single phase special machines and servo motors.
- To impart knowledge on Linear electrical machine and permanent magnet axial flux machines.

Stepper Motor: Introduction, Variable Reluctance Stepper Motor, Permanent Magnet Stepper Motor, Hybrid Stepper Motor, Other Types of Stepper Motor, Windings in Stepper Motors, Torque Equation, Characteristics of Stepper Motor, Open − loop Control of Stepper Motor, Closed − loop Control of Stepper Motor, Microprocessor − Based Control of Stepper Motor, Applications of Stepper Motor. Revised Bloom's Taxonomy Level Module-2 Switched Reluctance Motor (SRM): Construction, Principle of Working, Basics of SRM Analysis, Constraints on Pole Arc and Tooth Arc, Torque Equation and Characteristics, Power Converter Circuits, Control of SRM, Rotor Position Sensors, Current Regulators, Microprocessor − Based Control of SRM, Sensorless Control of SRM. Permanent Magnet DC Motor and Brushless Permanent Magnet DC Motor: Permanent Magnet DC (PMDC) motor, Brushless Permanent Magnet DC (BLDC) Motors. Revised Bloom's Taxonomy Level Module-3	Teaching Hours 10
Stepper Motor: Introduction, Variable Reluctance Stepper Motor, Permanent Magnet Stepper Motor, Hybrid Stepper Motor, Other Types of Stepper Motor, Windings in Stepper Motors, Torque Equation, Characteristics of Stepper Motor, Open – loop Control of Stepper Motor, Closed – loop Control of Stepper Motor, Microprocessor – Based Control of Stepper Motor, Applications of Stepper Motor. ■ Revised Bloom's Taxonomy Level The Remembering, L₂ – Understanding.	10
Taxonomy Level Module-2 Switched Reluctance Motor (SRM): Construction, Principle of Working, Basics of SRM Analysis, Constraints on Pole Arc and Tooth Arc, Torque Equation and Characteristics, Power Converter Circuits, Control of SRM, Rotor Position Sensors, Current Regulators, Microprocessor – Based Control of SRM, Sensorless Control of SRM. Permanent Magnet DC Motor and Brushless Permanent Magnet DC Motors: Permanent Magnet DC (PMDC) motor, Brushless Permanent Magnet DC (BLDC) Motors. ■ Revised Bloom's Taxonomy Level L₁ – Remembering, L₂ – Understanding. Module-3 Permanent Magnet Synchronous Motor (PMSM): Construction, Principle of Operation, EMF Equation, Torque Equation, Phasor Diagram, Circle Diagram, Comparison of Conventional and PMSM, Control of PMSM, Applications. 1 Synchronous Reluctance Motor (SyRM): Constructional of SyRM, Working, Phasor Diagram and Torque Equation, Control of SyRM, Advantages and Applications. ■	10
Switched Reluctance Motor (SRM): Construction, Principle of Working, Basics of SRM Analysis, Constraints on Pole Arc and Tooth Arc, Torque Equation and Characteristics, Power Converter Circuits, Control of SRM, Rotor Position Sensors, Current Regulators, Microprocessor − Based Control of SRM, Sensorless Control of SRM. Permanent Magnet DC Motor and Brushless Permanent Magnet DC Motor: Permanent Magnet DC (PMDC) motor, Brushless Permanent Magnet DC (BLDC) Motors. Revised Bloom's Taxonomy Level Module-3 Permanent Magnet Synchronous Motor (PMSM): Construction, Principle of Operation, EMF Equation, Torque Equation, Phasor Diagram, Circle Diagram, Comparison of Conventional and PMSM, Control of PMSM, Applications. Synchronous Reluctance Motor (SyRM): Constructional of SyRM, Working, Phasor Diagram and Torque Equation, Control of SyRM, Advantages and Applications. ■	10
Constraints on Pole Arc and Tooth Arc, Torque Equation and Characteristics, Power Converter Circuits, Control of SRM, Rotor Position Sensors, Current Regulators, Microprocessor − Based Control of SRM, Sensorless Control of SRM. Permanent Magnet DC Motor and Brushless Permanent Magnet DC Motors. Permanent Magnet DC (PMDC) motor, Brushless Permanent Magnet DC (BLDC) Motors. ■ Revised Bloom's Taxonomy Level Module-3 Permanent Magnet Synchronous Motor (PMSM): Construction, Principle of Operation, EMF Equation, Torque Equation, Phasor Diagram, Circle Diagram, Comparison of Conventional and PMSM, Control of PMSM, Applications. Synchronous Reluctance Motor (SyRM): Constructional of SyRM, Working, Phasor Diagram and Torque Equation, Control of SyRM, Advantages and Applications. ■	10
Module-3 Permanent Magnet Synchronous Motor (PMSM): Construction, Principle of Operation, EMF Equation, Torque Equation, Phasor Diagram, Circle Diagram, Comparison of Conventional and PMSM, Control of PMSM, Applications. Synchronous Reluctance Motor (SyRM): Constructional of SyRM, Working, Phasor Diagram and Torque Equation, Control of SyRM, Advantages and Applications.	
Permanent Magnet Synchronous Motor (PMSM): Construction, Principle of Operation, EMFEquation, Torque Equation, Phasor Diagram, Circle Diagram, Comparison of Conventional andPMSM, Control of PMSM, Applications.Synchronous Reluctance Motor (SyRM): Constructional of SyRM, Working, Phasor Diagram andTorque Equation, Control of SyRM, Advantages and Applications.	
Equation, Torque Equation, Phasor Diagram, Circle Diagram, Comparison of Conventional and PMSM, Control of PMSM, Applications. Synchronous Reluctance Motor (SyRM): Constructional of SyRM, Working, Phasor Diagram and Torque Equation, Control of SyRM, Advantages and Applications.	
Revised Bloom's L ₁ - Remembering L ₂ - Understanding	10
Taxonomy Level	
Module-4	
Single Phase Reluctance Motor, Universal Motor. Servo Motors: DC Servo Motors, AC Servo Motors. ■	10
Revised Bloom's L_1 – Remembering, L_2 – Understanding.Taxonomy Level L_1 – Remembering, L_2 – Understanding.	
Module-5	
Linear Electric Machines: Linear Induction Motor, Linear Synchronous Motor, DC Linear Motor, Linear Reluctance Motor, Linear Levitation Machines.	10

18ECD241 SPECIAL ELECTRICAL MACHINES (Professional Floating Course) (continued)

	(Professional Elective Course) (continued)	
Module-5 (contin	nued)	Teaching Hours
Flux Machines, Con	et Axial Flux (PMAF) Machines: Comparison of Permanent Radial and Axial Instruction of PMAF Machines, Armature Windings, torque and EMF Equations of Egram, Output Equation, Pulsating Torque And its Minimisation, Control and IAF. ■	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding.	

Course outcomes:

At the end of the course the student will be able to:

- Discuss stepper motors, their construction, working and excitation, control schemes and their applications.
- Discuss the construction, working and applications of permanent magnet DC motors and permanent magnet synchronous motors and switched reluctance motor.
- Discuss the control schemes permanent magnet DC motors and permanent magnet synchronous motors
- Discuss the constructional features, principle of operation and control schemes of synchronous reluctance motor.
- Explain the construction, working and applications of special single phase motors.
- Discuss the constructional features and analysis of DC and AC servomotors.
- Describe the construction and working of linear electric motors; linear induction motor, linear synchronous motor, linear DC motor and linear reluctance motor.
- Explain the structure, analysis, control and applications of permanent magnet axial flux machines.

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem analysis.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

Text/Reference Books

1	Special Electrical Machines	E.G. Janardanan	PHI	1 st Edition 2014.
2	Special Electrical Machines	K Venkataratham	University Press	2009
3	Brushless Permanent Magnet and Reluctance Motor Drives	T J E Miller	Clerendon Press, Oxford	1989
4	Permanent Magnet and Brushless DC Motors	Kenjo T and Nagamori S	Clerendon Press, Oxford	1985
5	Stepping Motors and their Microprocessor Control	KenjoT	Clerendon Press Oxford	1984
6	Switched Reluctance Motor Drives Modelling, Simulation Design and Applications	Krishan R	CRC	2001

SEMESTER - II

PROCESS CONTROL AND INSTRUMENTATION (Professional Elective Course)			
Subject Code	18ECD242	CIE Marks	40
Number of Lecture Hours/Week	04	Exam Hours	03
Total Number of Lecture Hours	50	SEE Marks	60

Credits - 04

Course objectives:

- To impart knowledge on process control loop, digital process control and measurement time response.
- To define the purpose and techniques of analog and digital signal conditioning.
- To describe different types of sensors.
- To apply digital control implementation strategies for process control.
- To impart knowledge on controllers principle and characteristics.
- To apply the process control principles to distributed control application.

Module-1		Teaching Hours
	ocess Control: Process control principles, servo mechanism, discrete state cess control block diagram, control system evaluation, analog and digital ime response.	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding.	
Module-2		
	l Signal Conditioning: Principle of analog signal conditioning, Op-amp circuit in nverters, data acquisition systems.	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding.	
Module-3		
	e-Temperature Detectors, Thermistor, Thermocouple, Capacitive and Inductive Reluctance sensors, Level sensors, Strain sensors.	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding.	
Module-4		
Discrete State Prodiagrams and PLC'	cess Control: Definition, characteristic of the system, relay controllers and ladder s.	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding.	
Module-5		
Digital Control: co	omputers in process control, process control networks, characteristic of digital	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding.	
Course outcomes		

Course outcomes:

At the end of the course the student will be able to:

- Explain process control loop, digital process control and measurement time response.
- Define the purpose and techniques of analog and digital signal conditioning.
- Describe different types of sensors.
- Apply digital control implementation strategies for process control.
- Explain controllers principle and characteristics.
- Apply the process control principles to distributed control application.

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Design / development of solutions

18ECD242 PROCESS CONTROL AND INSTRUMENTATION (Professional Elective Course) (continued)

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

Text/Reference Books

1	1	Process Control Instrumentation Technology	Curtis D.Johnson	РНІ
2	2	Instrumentation Device and Systems	Rangan, Sharma and Mani	TMH Publication

M.TECH COMPTER APPLICATIONS TO INDUSTRIAL DRIVES (ECD) **CHOICE BASED CREDIT SYSTEM (CBCS) SEMESTER - I EMC IN POWER ELECTRONICS (Professional Elective Course)** Subject Code 40 18ECD243 CIE Marks Number of Lecture Hours/Week 04 Exam Hours 03 Total Number of Lecture Hours 50 SEE Marks 60 Credits - 04

- To explain different electromagnetic disturbances and their classification.
- To explain measurement of the high frequency characteristics of EMI filter elements, their selection and measurement.
- To explain suppression of noise in relay systems.
- To explain designing and analysis of EMI filters.
- To explain conduction of test as per IEC specifications and reducing internal EMI.

Module-1		Teach Hours
Electromagnetic I	Disturbances: Introduction, Classification of disturbances by frequency content,	10
by character and tra		10
	Ieasurement: Introduction, EMI measuring instruments, Basic terms and	
conducted EMI refe	erences, Measuring the interference voltage and current, Spectrum analysers, EMI	
	consumer applications, Measuring impulse like EMI.	
	ctronic Equipment: EMI from power semiconductors, controlled rectifier	
circuits, EMI calcu	lation for semiconductor equipment.	
Revised Bloom's	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Taxonomy Level		
Module-2		
	nts: Measuring High Frequency Characteristics OF EMI Filter Elements,	10
Capacitors, Choke		4
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Module-3		
Noise Suppression	: Noise Suppression in Relay Systems, Application of AC Switching Relays,	10
	. Troise Suppression in Itelay Systems, rippineation of the Switching Itelays,	10
Application of RC	- Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters,	10
Application of RC EMI Generation an	- Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics.	10
Application of RC EMI Generation an EMI Filter Circui	– Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics. t selection and measurement: Definition of EMI Filter Parameters, ENI Filter	10
Application of RC EMI Generation an EMI Filter Circui Circuits, Insertion l	– Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics. t selection and measurement: Definition of EMI Filter Parameters, ENI Filter Loss Test Methods. ■	10
Application of RC EMI Generation an EMI Filter Circui	– Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics. t selection and measurement: Definition of EMI Filter Parameters, ENI Filter	
Application of RC EMI Generation an EMI Filter Circui Circuits, Insertion l Revised Bloom's	– Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics. t selection and measurement: Definition of EMI Filter Parameters, ENI Filter Loss Test Methods. ■	-
Application of RC EMI Generation an EMI Filter Circui Circuits, Insertion l Revised Bloom's Taxonomy Level Module-4 EMI Filter Design	 Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics. t selection and measurement: Definition of EMI Filter Parameters, ENI Filter Loss Test Methods. L₁ – Remembering, L₂ – Understanding, L₃ – Applying, L₄ – Analysing. EMI Filter Design for Insertion Loss, Calculation of Worst – case Insertion 	10
Application of RC EMI Generation an EMI Filter Circuit Circuits, Insertion I Revised Bloom's Taxonomy Level Module-4 EMI Filter Design Loss, Design Method	 Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics. t selection and measurement: Definition of EMI Filter Parameters, ENI Filter Loss Test Methods. ■ L₁ – Remembering, L₂ – Understanding, L₃ – Applying, L₄ – Analysing. EMI Filter Design for Insertion Loss, Calculation of Worst – case Insertion and for Mismatched Impedance Condition, Design Method for EMI Filters with 	
Application of RC EMI Generation an EMI Filter Circui Circuits, Insertion l Revised Bloom's Taxonomy Level Module-4 EMI Filter Design Loss, Design Meth Common – Mode C	 Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics. t selection and measurement: Definition of EMI Filter Parameters, ENI Filter Loss Test Methods. ■ L₁ – Remembering, L₂ – Understanding, L₃ – Applying, L₄ – Analysing. EMI Filter Design for Insertion Loss, Calculation of Worst – case Insertion and for Mismatched Impedance Condition, Design Method for EMI Filters with Choke Coils, Damped EMI Filters and Lossy Filter Elements, HF Characteristics 	
Application of RC EMI Generation an EMI Filter Circui Circuits, Insertion l Revised Bloom's Taxonomy Level Module-4 EMI Filter Design Loss, Design Meth Common – Mode Co of Noise Filter Circuits	— Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics. **t selection and measurement:* Definition of EMI Filter Parameters, ENI Filter Loss Test Methods. **L1 − Remembering, L2 − Understanding, L3 − Applying, L4 − Analysing. **EMI Filter Design for Insertion Loss, Calculation of Worst − case Insertion and for Mismatched Impedance Condition, Design Method for EMI Filters with Choke Coils, Damped EMI Filters and Lossy Filter Elements, HF Characteristics with Elements, EMI Filter Layout. ■	
Application of RC EMI Generation an EMI Filter Circui Circuits, Insertion l Revised Bloom's Taxonomy Level Module-4 EMI Filter Design Loss, Design Meth Common – Mode C	 Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics. t selection and measurement: Definition of EMI Filter Parameters, ENI Filter Loss Test Methods. ■ L₁ – Remembering, L₂ – Understanding, L₃ – Applying, L₄ – Analysing. EMI Filter Design for Insertion Loss, Calculation of Worst – case Insertion and for Mismatched Impedance Condition, Design Method for EMI Filters with Choke Coils, Damped EMI Filters and Lossy Filter Elements, HF Characteristics 	
Application of RC EMI Generation an EMI Filter Circui Circuits, Insertion l Revised Bloom's Taxonomy Level Module-4 EMI Filter Design Loss, Design Meth Common – Mode Co of Noise Filter Circ Revised Bloom's	— Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics. **t selection and measurement:* Definition of EMI Filter Parameters, ENI Filter Loss Test Methods. **L1 − Remembering, L2 − Understanding, L3 − Applying, L4 − Analysing. **EMI Filter Design for Insertion Loss, Calculation of Worst − case Insertion and for Mismatched Impedance Condition, Design Method for EMI Filters with Choke Coils, Damped EMI Filters and Lossy Filter Elements, HF Characteristics with Elements, EMI Filter Layout. ■	
Application of RC EMI Generation an EMI Filter Circui Circuits, Insertion I Revised Bloom's Taxonomy Level Module-4 EMI Filter Design Loss, Design Meth Common – Mode Coof Noise Filter Circ Revised Bloom's Taxonomy Level Module-5	- Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics. t selection and measurement: Definition of EMI Filter Parameters, ENI Filter Loss Test Methods. ■ L₁ − Remembering, L₂ − Understanding, L₃ − Applying, L₄ − Analysing. : EMI Filter Design for Insertion Loss, Calculation of Worst − case Insertion od for Mismatched Impedance Condition, Design Method for EMI Filters with Choke Coils, Damped EMI Filters and Lossy Filter Elements, HF Characteristics with Elements, EMI Filter Layout. ■ L₁ − Remembering, L₂ − Understanding, L₃ − Applying, L₄ − Analysing.	10
Application of RC EMI Generation an EMI Filter Circui Circuits, Insertion I Revised Bloom's Taxonomy Level Module-4 EMI Filter Design Loss, Design Metho Common – Mode Coof Noise Filter Circuit Revised Bloom's Taxonomy Level Module-5 Testing for Susceptions	— Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics. **t selection and measurement:* Definition of EMI Filter Parameters, ENI Filter Loss Test Methods. **L1 − Remembering, L2 − Understanding, L3 − Applying, L4 − Analysing. **EMI Filter Design for Insertion Loss, Calculation of Worst − case Insertion and for Mismatched Impedance Condition, Design Method for EMI Filters with Choke Coils, Damped EMI Filters and Lossy Filter Elements, HF Characteristics with Elements, EMI Filter Layout. ■	
Application of RC EMI Generation an EMI Filter Circuit Circuits, Insertion I Revised Bloom's Taxonomy Level Module-4 EMI Filter Design Loss, Design Methodom – Mode Cof Noise Filter Circuits Revised Bloom's Taxonomy Level Module-5 Testing for Susceptests per IEC Speckeduction Technic	- Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics. **t selection and measurement:* Definition of EMI Filter Parameters, ENI Filter Loss Test Methods. **Landam Embering*, Landam Embering*, Landam Loss*, Calculation of Worst − case Insertion and for Mismatched Impedance Condition, Design Method for EMI Filters with Choke Coils, Damped EMI Filters and Lossy Filter Elements, HF Characteristics with Elements, EMI Filter Layout. **Landam Layout**	10
Application of RC EMI Generation an EMI Filter Circui Circuits, Insertion I Revised Bloom's Taxonomy Level Module-4 EMI Filter Design Loss, Design Meth Common – Mode Co of Noise Filter Circu Revised Bloom's Taxonomy Level Module-5 Testing for Suscep Tests per IEC Spec Reduction Techni Electromagnetic Co	- Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics. t selection and measurement: Definition of EMI Filter Parameters, ENI Filter Loss Test Methods. ■ L₁ − Remembering, L₂ − Understanding, L₃ − Applying, L₄ − Analysing. : EMI Filter Design for Insertion Loss, Calculation of Worst − case Insertion and for Mismatched Impedance Condition, Design Method for EMI Filters with Choke Coils, Damped EMI Filters and Lossy Filter Elements, HF Characteristics uit Elements, EMI Filter Layout. ■ L₁ − Remembering, L₂ − Understanding, L₃ − Applying, L₄ − Analysing. **Tibility to Power Line Disturbances: Surge Voltages in AC Power Mains, EMC iffications, Other EMS Test Methods. **Question of the Power Line Disturbances: Coupling, Electromagnetic Coupling, Dupling Reduction Methods, Wiring Layout Methods to Reduce EMI Coupling,	10
Application of RC EMI Generation an EMI Filter Circuit Circuits, Insertion I Revised Bloom's Taxonomy Level Module-4 EMI Filter Design Loss, Design Methodom – Mode Cof Noise Filter Circuits Revised Bloom's Taxonomy Level Module-5 Testing for Susceptests per IEC Speckeduction Technic	- Snubbers to Power Semiconductors, Shielded Transformers, Capacitor Filters, d Reduction at its Source, Influence of Layout and Control of Parasitics. t selection and measurement: Definition of EMI Filter Parameters, ENI Filter Loss Test Methods. ■ L₁ − Remembering, L₂ − Understanding, L₃ − Applying, L₄ − Analysing. : EMI Filter Design for Insertion Loss, Calculation of Worst − case Insertion and for Mismatched Impedance Condition, Design Method for EMI Filters with Choke Coils, Damped EMI Filters and Lossy Filter Elements, HF Characteristics uit Elements, EMI Filter Layout. ■ L₁ − Remembering, L₂ − Understanding, L₃ − Applying, L₄ − Analysing. **Tibility to Power Line Disturbances: Surge Voltages in AC Power Mains, EMC iffications, Other EMS Test Methods. **Question of the Power Line Disturbances: Coupling, Electromagnetic Coupling, Dupling Reduction Methods, Wiring Layout Methods to Reduce EMI Coupling,	10

18ECD243 EMC IN POWER ELECTRONICS (Professional Elective Course) (continued)

Course outcomes:

At the end of the course the student will be able to:

- Describe Electromagnetic interference and its classification and measurement of conducted high frequency disturbance.
- Survey electromagnetic interference specific to power electronic equipment.
- Explain the characteristics of circuit elements used for noise suppression.
- Explain EMI suppression methods used in semiconductor and electromechanical devices.
- Explain design of EMI filter circuits and filtering methods.
- Explain susceptibility and noise withstand capability test.
- Explain EMS reduction techniques for power electronic equipment.
- Conduct test as per IEC specifications and explain the process of reducing internal EMI.

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Design / development of solutions, Modern Tool Usage, Ethics.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

Textbook 1 Electromagnetic Compatibility in Power Electronics Laszlo Tihanyi Newnes 1st Edition, 1995

M.TECH POWER COMPUTER APPLICATION IN INDUSTRIAL DRIVES (ECD)
Outcome Based Education(OBE) and Choice Based Credit System (CBCS)
SEMESTER - II

PREDICTIVE CONTROL OF DRIVES (Professional Elective Course)

Course Code	18ECD251	CIE Marks	40
Number of Lecture Hours/Week	04	Exam Hours	03
Total Number of Lecture Hours	50	SEE Marks	60
	Cualita 04		

Credits - 04

- To explain the mathematical modeling of machine drives and power converter using space vector description of physical variables such as voltage, current and flux, and converting the space vector based model to various reference frames.
- To explain control of semiconductor switches in the implementation of control systems and the PWM implementation of control systems
- To explain design and control of PI and PID controller using pole placement design techniques for the position, velocity and torque control of PSSM and induction motors.
- To explain Implementation of P and PI controllers for both current controllers as inner-loop controllers, and velocity and *DC* voltage controllers as outer-loop controllers.
- To explain tuning of P and PI controllers for different applications and to study the performance robustness of the controllers. ■

Module-1		Teachin Hours
Mounted PMSM, Modelling of Induc Control of Semico	Drives and Power Converter: Space Phasor Representation, Model of Surface Model of Interior Magnets PMSM, Per Unit Model and PMSM Parameters, etion Motor, Modelling of Power Converter. Inductor Switches via PWM Technologies: Topology of IGBT Inverter, Six-step Carrier Based PWM, Space Vector PWM, Simulation Study of the Effect of PWM.	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Module-2		
Control Systems U Controller Design for Position Control for Induction Moto Controller Design PID Control Syste Systems, Implement for Induction Moto	em Design for Electrical Drives and Power Converters: Overview of PID sing Pole-assignment Design Techniques, Overview of PID Control of PMSM, PI for Torque Control of PMSM, Velocity Control of PMSM, PID Controller Design of PMSM, Overview of PID Control of Induction Motor, PID Controller Design or, Overview of PID Control of Power Converter, PI Current and Voltage for Power Converter. Lem Implementation: P and PI Controller Implementation in Current Control entation of Current Controllers for PMSM, Implementation of Current Controllers ors, Current Controller Implementation for Power Converter, Implementation of trol System, MATLAB Tutorial on Implementation of PI Controller.	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Module-3	-	1
Control Systems, 7	rol Systems with Experimental Validations: Sensitivity Functions in Feedback Funing Current-loop q-axis Proportional Controller (PMSM), Tuning Current-loop	10
Effects, Tuning Ca Power Converter,	SM), Performance Robustness in Outer-loop Controllers, Analysis of Time-delay scade PI Control Systems for Induction Motor, Tuning PI Control Systems for Funing P Plus PI Controllers for Power Converter, Robustness of Power Converter sing PI Current Controllers,	

18ECD251 PREDICTIVE CONTROL OF DRIVES

(Professional Elective Course) (continued)	
Module-4	Teaching Hours
FCS Predictive Control in d – q Reference Frame: States of IGBT Inverter and the Operational Constraints, FCS Predictive Control of PMSM, MATLAB Tutorial on Real-time Implementation of FCS-MPC, Analysis of FCS-MPC System, Overview of FCS-MPC with Integral Action, Derivation of I-FCS Predictive Control Algorithm, MATLAB Tutorial on Implementation of I-FCS Predictive Controller, I-FCS Predictive Control of Induction Motor, I-FCS Predictive Control of Power Converter, Evaluation of Robustness of I-FCS-MPC via Monte-Carlo Simulations, Velocity and Position Control of PMSM Using I-FCS-MPC, Velocity and Position Control of Induction Motor	10
Using I-FCS-MPC, Summary. \blacksquare Revised Bloom's L_1 - Remembering, L_2 - Understanding, L_3 - Applying, L_4 - Analysing.	
Module-5 FCS Predictive Control in $\alpha - \beta$ Reference Frame: FCS Predictive Current Control of PMSM,	10
Resonant FCS Predictive Current Control, Resonant FCS Current Control of Induction Motor, Resonant FCS Predictive Power Converter Control. Discrete-time Model Predictive Control (DMPC) of Electrical Drives and Power Converter:	10
Linear Discrete-time Model for PMSM, Discrete-time MPC Design with Constraints, Experimental Evaluation of DMPC of PMSM, Power Converter Control Using DMPC with Experimental Validation.	
Continuous-time Model Predictive Control (CMPC) of Electrical Drives and Power Converter: Continuous-time MPC Design, CMPC with Nonlinear Constraints, Simulation and Experimental Evaluation of CMPC of Induction Motor, Continuous-time Model Predictive Control of Power Converter, Gain Scheduled Predictive Controller, Experimental Results of Gain Scheduled Predictive Control of Induction Motor.■	

Course outcomes:

Revised Bloom's

Taxonomy Level

At the end of the course the student will be able to:

• Develop mathematical models of machine drives and power converter using space vector description of physical variables.

 L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.

- Explain control of semiconductor switches in the implementation of control systems and the PWM implementation of control systems.
- Explain design and control of PI and PID controller using pole placement design techniques for the position, velocity and torque control of PSSM and induction motors.
- Explain Implementation of P and PI controllers for current control as inner-loop controllers,
- Explain Implementation of P and PI controllers for velocity and voltage control as outer-loop controllers.
- Explain tuning of P and PI controllers.
- Assess the performance robustness of the controllers. ■

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Design / development of solutions, Modern Tool Usage, Individual and Team work, Communication, Lifelong Learning.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- ▶ Students will have to answer 5 full questions, selecting one full question from each module. ■

Textl	book			
1	PID And Predictive Control of Electrical Drives	Liuping Wang et al	Wiley	2015
	and Power Converters Using Matlab®/Simulink®			

60

M.TECH POWER COME	PUTER APPLICATION	IN INDUSTRIAL DR	IVES (ECD)
Outcome Based Educ	cation(OBE) and Choice	Based Credit System	(CBCS)
	SEMESTER - I	I	
ELECTRIC D	RIVE DESIGN (Profes	sional Elective Course)
Course Code	18ECD252	CIE Marks	40
Number of Lecture Hours/Week	04	Exam Hours	03

Credits - 04

50

SEE Marks

Course objectives:

Total Number of Lecture Hours

- To define a drive, identify the components of a drive, explain the function and specifications of driven body, its transient behavior and transmission types and characterization of transmission system.
- To identify the motors used for the drives, their characteristics and to develop dynamic equations for the design a drive.
- To develop the thermal equations for the behavior of the electrical machine to study the dynamic behavior of the drive.
- To study the electrical and electromagnetic peripherals such as voltages sources, auto transformers and other devices used for starting the electrical motors and power electronics devices to control the operation of the motor.
- To study sensors for controlling the position and speed of the motor, performance limits of direct drives and motors with external rotors and realization of power electronics and control systems associated with a drive. ■

Module-1		Teach Hours
Electric Drive Cor	nponents: Definition, Electric drive components.	10
	nction of the driven body, Reference or rated running, Transient behaviour,	10
Specifications.		
	nsmission types and characterization, Resolution, Speed adaptation, Dynamic	
	ory torque, Position transfer. ■	
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding.	
Module-2		
	rization, Rotating and linear motors, Induction motors, DC motors, Synchronous lluctance motors, Linear motors, Piezoelectric motors and actuators, BLDC motor	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding.	
Module-3		1
	erization: Characteristics, Scaling laws, Parametric expression. In Electric Drive: Introduction, Dynamic equations, Example.	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding.	
Module-4		
up, Cooling modes. Electrical Periphe	mal Limits: Heating importance, Thermal equations, Energy dissipated at start- rals: Adaptation, Sources, Voltage adjustment, Current adjustment devices. erals: Power electronic, Simple switch, H bridge, Element bridge. ■	10
	L_1 – Remembering, L_2 – Understanding.	1

18ECD252 ELECTRIC DRIVE DESIGN	
(Professional Elective Course) (continued)	
Module-5	Teaching
	Hours
Sensors: Functions and types, Optical position sensors, Hall sensors, Inductive position sensors,	10
Resolver-type rotating, inductive, contactless sensors, Other position sensors, The motor as a	
position sensor, Sensor position, Current sensors, Protection sensors.	
Direct Drives: Performance limits, Motor with external rotor, Example.	
Integrated Drives: Principle, Realization. ■	
Revised Bloom's L_1 – Remembering, L_2 – Understanding.	
Taxonomy Level	

Course outcomes:

At the end of the course the student will be able to:

- Explain the function and specifications of driven body, its transient behavior and transmission types and characterization of transmission system.
- Suggest a motor for a drive, its characteristics.
- Develop dynamic equations for the design of the drive.
- Develop thermal equations for the analysis of the transient behavior of electrical machine.
- Explain the necessity of the electrical and electromagnetic peripherals and devices used for starting the electrical motors.
- Explain power electronics devices to control the operation of the motor.
- Explain the speed and position sensors, performance limits of direct drives and motors with external rotors.
- Explain realization of power electronics and control systems associated with a drive.

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

1	Electric Drives	Marcel Jufer	Wiley	2010

HYBRID ELECTRIC VEHICLES (Professional Elective Course)

11121112 122011110 (11110125) (1101055101111 121011(1 COUISO)			
Course Code	18ECD253	CIE Marks	40
Number of Lecture Hours/Week	04	Exam Hours	03
Total Number of Lecture Hours	50	SEE Marks	60
C 11 04			

Credits - 04

- To explain the basics of electric and hybrid electric vehicles, their architecture, technologies and fundamentals.
- To explain plug in hybrid electric vehicle architecture, design and component sizing and the power electronics devices used in hybrid electric vehicles.
- To discuss various electric drives suitable for hybrid electric vehicles.
- To discuss different energy storage technologies used for hybrid electric vehicles and their control.
- To explain modeling and simulation of electric hybrid vehicles by different techniques, sizing of components and design optimization and energy management. ■

componen	ts and design optimization and energy management.		
Module-1		Teaching Hours	
Architectures of HE Key Technology of Hybridization of tl Plug-In Hybrid Elec HEV Fundamenta	ainable Transportation, A Brief History of HEVs, Why EVs Emerged and Failed, EVs, Interdisciplinary Nature of HEVs, State of the Art of HEVs, Challenges and HEVs. the Automobile: Vehicle Basics, Basics of the EV, Basics of the HEV, Basics of the Cyclic (PHEV), Basics of Fuel Cell Vehicles (FCVs). Is: Introduction, Vehicle Model, Vehicle Performance, EV Powertrain Series Hybrid Vehicle, Parallel Hybrid Vehicle, Wheel Slip Dynamics. L ₁ – Remembering, L ₂ – Understanding.	10	
Module-2			
Range of Blended F and Component Siz to PHEV Conversion Power Electronics Buck Converter Use Inverter, Current So EV and PHEV Batt	ectric Vehicles: Introduction to PHEVs, PHEV Architectures, Equivalent Electric PHEVs, Fuel Economy of PHEVs, Power Management of PHEVs, PHEV Design ing, Component Sizing of EREVs, Component Sizing of Blended PHEVs, HEV ons, Other Topics on PHEVs, Vehicle-to-Grid Technology. in HEVs: Introduction, Principle of Power Electronics, Rectifiers Used in HEVs, ed in HEVs, Non-isolated Bidirectional DC−DC Converter, Voltage Source ource Inverter, Isolated Bidirectional DC−DC Converter, PWM Rectifier in HEVs, ery Chargers, Modelling and Simulation of HEV Power Electronics, Emerging Devices, Circuit Packaging, Thermal Management of HEV Power Electronics. ■ L₁ − Remembering, L₂ − Understanding.	10	
Module-3			
Motor Drives, Swite	and Drives in HEVs: Introduction, Induction Motor Drives, Permanent Magnet ched Reluctance Motors, Doubly Salient Permanent Magnet Machines, Design on Motors, Thermal Analysis and Modelling of Traction Motors. ■ L₁ − Remembering, L₂ − Understanding.	10	
Module-4			
Comparison of Dif Electric Circuits, Ba Storage System, Hy System. ■	pacitors, Fuel Cells, and Controls: Introduction, Battery Characterization, ferent Energy Storage Technologies for HEVs, Modelling Based on Equivalent attery Charging Control, Charge Management of Storage Devices, Flywheel Energy Adraulic Energy Storage System, Fuel Cells and Hybrid Fuel Cell Energy Storage	10	
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding.		

Teaching Hours

M.TECH POWER COMPUTER APPLICATION IN INDUSTRIAL DRIVES (ECD) Outcome Based Education(OBE) and Choice Based Credit System (CBCS) SEMESTER - II

18ECD253 HYBRID ELECTRIC VEHICLES (Professional Elective Course) (continued)

HEV Component Sizing and Design Optimization: Introduction, Global Optimization Algorithms for HEV Design, Model-in-the-Loop Design Optimization Process, Parallel HEV Design Optimization Example, Series HEV Design Optimization Example.

Vehicular Power Control Strategy and Energy Management: A Generic Framework, Definition, and Needs, Methodology to Implement, Benefits of Energy Management. ■

Revised Bloom's
Taxonomy Level

 $L_1-Remembering,\,L_2-Understanding,\,L_3-Applying,\,L_4-Analysing.$

Course outcomes:

At the end of the course the student will be able to:

- Explain the basics of electric and hybrid electric vehicles, their architecture, technologies and fundamentals.
- Explain plug in hybrid electric vehicle architecture, design and component sizing.
- Explain the use of different power electronics devices in hybrid electric vehicles.
- Suggest a suitable electric drive for a specific type of hybrid electric vehicle.
- Explain the use of different energy storage devices used for hybrid electric vehicles, their technologies and control.
- Simulate electric hybrid vehicles by different techniques for the performance analysis. ■

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Modern Tool Usage, Individual and Team work, Communication.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

1 Hybrid Electric Vehicles principles and Applications with Practical Perspectives	Chris Mi,M. Abul Masrur,David Wenzhong Gao	Wiley	2011	
--	---	-------	------	--

M.TECH POWER COMPUTER APPLICATION IN INDUSTRIAL DRIVES (ECD)
Outcome Based Education(OBE) and Choice Based Credit System (CBCS)
CENTECTED II

SEMESTER - II

DRIVES LABORATORY - 2			
Course Code	18ECDL26	CIE Marks	40
Number of Practical Hours/Week	04	Exam Hours	03
Total Number of Practical Hours	56	SEE Marks	60
C 11. 00			

Credits - 02

Course objectives:

- To model and validate a separately excited DC motor and to find the performance under open loop for different types of voltages and closed loop condition with speed and current controllers.
- To conduct experiments on two pulse single phase fully controlled to validate the output voltage for different input voltages and simulate a six pulse converter to generate firing pulses
- To implement two quadrant choppers, study the performance of cycloconverters, thyristor converter based dc drive, open loop and closed loop control of AC drive.
- To study VSI based induction motor drive and test a drive under different loading conditions.

	10 study v31 based induction motor drive and test a drive under different loading conditions.			
Sl. NO	Experiments			
1	Modelling and validation of a separately excited DC motor.			
	i)To verify the performance under open loop for different input voltages of Step, Ramp and Step-ramp.			
2	Closed loop operation of a separately excited DC motor.			
	i)To study the closed loop operation using P & PI gain speed controller and PI current controller.			
3	Operation of two pulse converter			
	a)Simulation of operation of a single phase fully controlled converter and generation of firing pulses			
	(b)Validate the output voltage of the converter for various control voltages			
4	Operation of six pulse converter simulation of a three phase controlled converter and generation of firing			
	pulses.			
5	mplementation of two quadrant chopper DC drive.			
6	Study of thyristor converter based DC drive.			
7	Study and evaluation of the performance of a cycloconverters.			
8	Study of AC motor drive			
	(a) V/f Open loop control (b) Closed loop speed control with slip compensation.			
9	Study of space vector PWM (VSI) based Induction Motor drive.			
10	Testing of motor drive under various load conditions (mechanical coupling of 2 motor drives).			
	10 Testing of motor drive under various load conditions (incenamear coupling of 2 motor drives).			
	Bloom's L_1 - Remembering, L_2 - Understanding, L_3 - Applying, L_4 - Analysing, L_5 - Evaluating.			

Course outcomes:

At the end of the course the student will be able to:

- Model separately excited DC motor to evaluate its performance under open loop for different types of voltages and closed loop condition with speed and current controllers.
- Model separately excited DC motor to evaluate its performance under closed loop condition with speed and current controllers.
- Conduct experiments on two pulse single phase fully controlled converter to validate the output voltage for different input voltages.
- Simulate a six pulse converter to generate firing pulses.
- Verify the performance of two quadrant choppers, cycloconverters, thyristor converter based dc drive, open loop and closed loop control of AC drive.
- Model VSI based induction motor drive to and test under different loading conditions.

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Conduct investigations of complex Problems, Modern Tool Usage, Individual and Team work, Communication.

SEMESTER - II

TECHHNICAL SEMINAR			
Course Code	18ECD27	CIE Marks	100
Number of contact Hours/week	02	Exam Hours	
Total No. of contact Hours		SEE Marks	

Credits - 02

Course objectives:

The objective of the seminar is to inculcate self-learning, face audience confidently, enhance communication skill, involve in group discussion and present and exchange ideas.

Each student, under the guidance of a Faculty, is required to

- Choose, preferably through peer reviewed journals, a recent topic of his/her interest relevant to the Course of Specialization.
- Carryout literature survey, organize the Course topics in a systematic order.
- Prepare the report with own sentences.
- Type the matter to acquaint with the use of Micro-soft equation and drawing tools or any such facilities.
- Present the seminar topic orally and/or through power point slides.
- Answer the queries and involve in debate/discussion.
- Submit two copies of the typed report with a list of references.

The participants shall take part in discussion to foster friendly and stimulating environment in which the students are motivated to reach high standards and become self-confident.

The CIE marks for the seminar shall be awarded (based on the relevance of the topic, presentation skill, participation in the question and answer session and quality of report) by the committee constituted for the

Marks distribution for CIE of the course 18ECD27 seminar:

Seminar Report: 30 marks Presentation skill:50 marks Ouestion and Answer:20 marks

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Design / development of solutions, Conduct investigations of complex Problems, Modern Tool Usage, Engineers and society, Environment and sustainability, Ethics, Individual and Team work, Communication.

III SEMESRER M.Tech COMPUTER APPLICATIONS IN INDUSTRIAL DRIVES

M.TECH POWER COMPUTER APPLICATION IN INDUSTRIAL DRIVES (ECD)			
Outcome Based Education(OBE) and Choice Based Credit System (CBCS)			
SEMESTER - III			
DIGITAL POWER ELECTRONICS (Professional Core Course)			
Course Code	18ECD31	CIE Marks	40
Number of Lecture Hours/Week	04	Exam Hours	03
Total Number of Lecture Hours	50	SEE Marks	60
Credits - 04			

- To give introduction to multi quadrant operation and choppers, digital power electronic circuits, power semiconductor devices applied in power electronics and the important factors involved in digital power electronics.
- To explain basic mathematics of digital control systems and mathematical modeling of digitally controlled power electronic devices such as rectifiers, inverters and converters
- To explain open loop and closed loop control of power electronic devices and energy factor application
 of AC and DC motor drives. ■

Module-1		Teaching Hours
Digital power electrolics and confelectronics. Energy Factor (Elenergy (SE), Energy	orical review, Traditional parameters, Multiple-quadrant operations and choppers, ronics: pump circuits and conversion Technology, Shortage of analog power version technology, Power semiconductor devices applied in digital power (F) and Sub-sequential Parameters: Introduction, Pumping energy (PE), Stored of factor (EF), Variation energy factor (EFV), Time constant, τ, and damping time ples of applications, Small signal analysis. ■	10
Revised Bloom's Taxonomy Level	L_1 - Remembering, L_2 - Understanding, L_3 - Applying.	
Module-2		
Shannon's sampling analog conversion, conversion: the zero (the s-domain), The Mathematical Mod AC/DC controlled Inverters, A second for AC/AC (AC/DC Digitally Controlled rectifiers, Single-ph rectifier, Three-phase rectifier, Three-phase phase half-wave controlled to the controlled rectifier in the controlle	ad AC/DC Rectifiers: Introduction, Mathematical modelling for AC/DC ase half-wave controlled AC/DC rectifier, Single-phase full-wave AC/DC e half-wave controlled AC/DC rectifier, Three-phase full-wave controlled AC/DC se double-anti-star with interphase-transformer controlled AC/DC rectifier, Six-ntrolled AC/DC rectifier, Six-phase full-wave controlled AC/DC rectifier.	10
Revised Bloom's Taxonomy Level	L_1 - Remembering, L_2 - Understanding, L_3 - Applying.	
Module-3		
inverters, Single-ph PWM VSI, Three-p Digitally Controlle converters, Fundam	ed DC/AC Inverters: Introduction, Mathematical modelling for DC/AC PWM as half-wave VSI, Single-phase full-bridge PWM VSI, Three-phase full-bridge shase full-bridge PWM CSI, Multistage PWM inverter, Multilevel PWM inverter. ed DC/DC Converters: Introduction, Mathematical Modelling for power DC/DC tental DC/DC converter, Developed DC/DC converters, Soft-switching tement resonant power converters. ■	10
Revised Bloom's Taxonomy Level	L_1 - Remembering, L_2 - Understanding, L_3 - Applying.	

18ECD31 DIGITAL POWER ELECTRONICS

(Professional Core Course) (continued)		
Module-4		Teaching Hours
	ed AC/AC Converters: Introduction, Traditional modelling for AC/AC	10
	erters, Single-phase AC/AC converter, Three-phase AC/AC voltage controllers,	
•	ers, TISO cycloconverters, TITO cycloconverters, AC/DC/AC PWM converters,	
Matrix converters.		
• •	I for Digital Power Electronics: Introduction, Stability analysis, Unit-step	
function responses,	Impulse responses. ■	
Revised Bloom's	L_1 - Remembering, L_2 - Understanding, L_3 - Applying.	
Taxonomy Level		
Module-5		
Closed-Loop Cont	rol for Digital Power Electronics: Introduction, PI control for AC/DC rectifiers,	10
PI control for DC/AC inverters and AC/AC (AC/DC/AC) converters, PID control for DC/DC		
converters.	plication in AC and DC Motor Drives: Introduction, Energy storage in motors,	
	•	
A DC/AC Voltage s	source, An AC/DC current source, AC motor drives, DC motor drives. ■	
Revised Bloom's L_1 – Remembering, L_2 – Understanding, L_3 – Applying.		
Taxonomy Level		

Course outcomes:

At the end of the course the student will be able to:

- Explain traditional parameters computation, multiple quadrant operation and choppers.
- Explain the disadvantages of analog power electronics and conversion technology, energy factor and sub-sequential parameters.
- Explain basic mathematics of digital control systems and mathematical modeling of digitally controlled power electronic devices such as rectifiers, inverters and converters.
- Describe mathematical modeling of AC/DC rectifiers, DC/AC inverters, DC/DC converters and AC/AC (AC/DC/AC) converters are working in the discrete-time state.
- Discuss DC/AC pulse-width-modulation (PWM) inverters and AC /AC converters modeled as a first-order-hold (FOH) element in digital control systems.
- Discuss DC/DC converter modeled as a second order-hold (SOH) element in digital control systems.
- To explain open loop and closed loop control of power electronic devices and energy factor application of AC and DC motor drives. ■

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

1	Digital Power Electronics and Applications	Fang Lin Luo, Hong Ye, Muhammad Rashid	Elsevier	2005

M.TECH POWER COMPUTER APPLICATION IN INDUSTRIAL DRIVES (ECD)
Outcome Based Education(OBE) and Choice Based Credit System (CBCS)
SEMESTED _ III

SEMESTER - III

POWER QUALITY PROBLEMS AND MITIGATION (Professional Elective Course)				
Course Code	18ECD321	CIE Marks	40	
Number of Lecture Hours/Week	04	Exam Hours	03	
Total Number of Lecture Hours	50	SEE Marks	60	
Credits - 04				

- To give an introduction on power quality (PQ), causes and effects of PQ problems, requirement of PQ improvements, and mitigation aspects of PQ problems.
- To give PQ definitions, terminologies, standards, benchmarks, monitoring requirements through numerical problems.
- To explain passive shunt and series compensation using lossless passive LC components, active shunt compensation using DSTATCOM (distribution static compensators), active series compensation using DVR (dynamic voltage restorer), and combined compensation using UPQC (unified power quality compensator) for mitigation of current-based PQ problems.
- To explain classification, modeling and analysis of various nonlinear loads which cause the power quality problems. ■

quanty pro			
Module-1		Teaching Hours	
Power Quality: Int	roduction, State of the Art on Power Quality, Classification of Power Quality	10	
Problems, Causes of Power Quality Problems, Effects of Power Quality Problems on Users,			
Classification of Mi	tigation Techniques for Power Quality Problems.		
	ndards and Monitoring: Introduction, State of the Art on Power Quality		
	itoring, Power Quality Terminologies, Power Quality Definitions, Power Quality		
	uality Monitoring, Numerical Examples.		
	Series Compensation: Introduction, State of the Art on Passive Shunt and Series		
	sification of Passive Shunt and Series Compensators, Principle of Operation of		
	Series Compensators, Analysis and Design of Passive Shunt Compensators,		
	ion, and Performance of Passive Shunt and Series Compensators, Numerical		
Examples. ■	T		
Revised Bloom's	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.		
Taxonomy Level	D ₁ Remembering, D ₂ Cheersameing, D ₃ ripprying, D ₄ rimaryong.		
Module-2			
	pensation: Introduction, State of the Art on DSTATCOMs, Classification of	10	
	nciple of Operation and Control of DSTATCOMs, Analysis and Design of	10	
	delling, Simulation, and Performance of DSTATCOMs, Numerical Examples.		
•			
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.		
Module-3			
	pensation: Introduction, State of the Art on Active Series Compensators,	10	
	tive Series Compensators, Principle of Operation and Control of Active Series		
Compensators, Ana	lysis and Design of Active Series Compensators, Modelling, Simulation, and		
Performance of Act	ive Series Compensators, Numerical Examples. ■		
Revised Bloom's	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.		
Taxonomy Level			
Module-4		•	
	ality Compensators: Introduction, State of the Art on Unified Power Quality	10	
Compensators, Classification of Unified Power Quality Compensators, Principle of Operation and			
Control of Unified Power Quality Compensators, Analysis and Design of Unified Power Quality			
Compensators, Modelling, Simulation, and Performance of UPQCs, Numerical Examples (from 6.01			
to 6.10). ■			
Revised Bloom's L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.			
Taxonomy Level			
-	<u> </u>		

18ECD321 POWER QUALITY PROBLEMS AND MITIGATION

(Professional Elective Course) (continued)		
Module-5		Teaching Hours
Loads That Cause I Classification of Nor	lity Compensators (continued): Numerical Examples (from 6.11to 20). Power Quality Problems: Introduction, State of the Art on Nonlinear Loads, nlinear Loads, Power Quality Problems Caused by Nonlinear Loads, Analysis of odelling, Simulation, and Performance of Nonlinear Loads, Numerical	10
Revised Bloom's Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	

Course outcomes:

At the end of the course the student will be able to:

- Explain causes, effects of PQ problems and classification of mitigation techniques for PQ problems.
- Explain PQ standards, terminology and monitoring requirements through numerical problems.
- Explain passive shunt and series compensation using lossless passive components.
- Explain the design, operation and modeling of active shunt compensation equipment.
- Explain the design, operation and modeling of active series compensation equipment.
- Explain the design operation and modeling of unified power quality compensators.
- Discuss mitigation of power quality problems due to nonlinear loads. ■

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Design / development of solutions, Modern Tool Usage, Engineers and society, Ethics, Individual and Team work, Communication, Lifelong Learning.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

1	Power Quality Problems and Mitigation Techniques	Bhim Singh, Ambrish Chandra, Kamal Al-Haddad	Wiley	2015

SEMESTER - III

FPGA AND PROGRAMMABLE LOGIC (Professional Elective Course)			
Subject Code	18ECD322	CIE Marks	40
Number of Lecture Hours/Week	04	Exam Hours	03
Total Number of Lecture Hours	50	SEE Marks	60

Credits - 04

Course objectives:

- To impart knowledge on implementation of electronic application in a suitable FPGA by using VHDL hardware description language
- To identify and design state machines using HDL and come up with an integrated chip (IC) solution in the form of a FPGA to be used in the area of drives.

To carry out reverse engineering of a product by using alternative FPGA solutions.

• To carry out reverse engineering of a product by using alternative FPGA solutions.		
Module-1	Teaching Hours	
Recapitulation of combinational logic circuits. Timing hazards in combinational circuits. Introduction to the history and development of programmable logic. Birth of hardware description languages. Types of programmable logic devices, simple PLDs and CPLDs.	10	
Revised Bloom's L ₁ - Remembering, L ₂ - Understanding, L ₃ - Applying, L ₄ - Analysing.		
Module-2		
Architecture of FPGA - generic features. Definition and construction of FPGA. Architecting an FPGA. Performance, density and capacity of an FPGA. Programmability issues. A study of the XC4000 configurable logic block. Introduction to major FPGA families, Xilinx, Altera and Cypress.	10	
Module-3		
Programming of FPGAs. Introduction to VHDL hardware description language. Programming elements, constructs and syntax. Entities and architecture, Creating combinational and synchronous logic. Details of function and procedures. Topics on identifiers, data objects, data types and attributes. Synthesis and fitting of designs.	10	
Revised Bloom's L ₂ – Understanding, L ₃ – Applying, L ₄ – Analysing, L ₅ – Evaluating.		
Module-4		
Simulation and verification of the programs. Considerations of area, speed and device resource utilization in FPGA technology. Creating test benches. Systematic study of implementing state machines using VHDL.	10	
Revised Bloom's L ₁ - Remembering, L ₂ - Understanding, L ₃ - Applying, L ₄ - Analysing.		
Module-5		
FPGA versus CPLD and case studies. Pipe lining and resource sharing concepts. Applications of FPGA in electric drives and communication devices. Future advances in FPGA technology.		

Course outcomes:

At the end of the course the student will be able to:

- Implement an electronic application in a suitable FPGA by using VHDL hardware description language.
- Identify and design state machines using HDL and come up with an integrated chip (IC) solution in the form of a FPGA to be used in the area of drives.
- Carry out reverse engineering of a product by using alternative FPGA solutions.

18ECD322 FPGA and Programmable Logic (Professional Elective Course) (continued)

Graduate Attributes (As per NBA)

Engineering Knowledge, Problem Analysis, Design / development of solutions, Modern Tool Usage, Engineers and society, Ethics, Individual and Team work, Communication, Lifelong Learning.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

Text/Reference Books

1	VHDL for Programmable logic	Kevin Skahill	Pearson Education	2004
2.	Digital Design, Principles and Practices'	John F. Wakerly	Pearson Prentice Hall	

SEMESTER - III

SENSORLESS AC MOTOR CONTROL (Professional Elective Course)					
Course Code	18ECD323	CIE Marks	40		
Number of Lecture Hours/Week	04	Exam Hours	03		
Total Number of Lecture Hours	50	SEE Marks	60		
Credits - 04					

- To give the basic concepts describing the mechanical and electrical behavior of alternating current (AC) machines and modeling of the these machines using Clark and Park transformations.
- To introduce definitions and concepts about the observability theory and observer normal forms for nonlinear systems, and the application of these concepts to AC machines.
- To design and develop observers for nonlinear systems, adoptive interconnected observers and higher order sliding mode observers for PMSM.
- To design a robust controller for AC motors by Backstepping techniques and sliding mode technique.
- To perform the feedback control of AC motors using robust controllers.

Module-1		Teachin Hours
System, The Conco	s of AC Machines: Applications of AC Machines, Electric Vehicles: Traction rdia/Clark and Park Transformations, Permanent Magnet Synchronous Motor, Operating Conditions and Benchmark, Conclusions. ■	10
Revised Bloom's Taxonomy Level	L_1 - Remembering, L_2 - Understanding, L_3 - Applying.	
Module-2		
	perty of AC Machines: Observability Property of AC Machines, Observability, Synchronous Motor, Induction Motor Observability Analysis, Normal Forms for onclusions. ■	10
Revised Bloom's Taxonomy Level	L_1 - Remembering, L_2 - Understanding, L_3 - Applying.	
Module-3		
Interconnected Obs	or AC Motors: Observers for Nonlinear Systems, PMSM Adaptive ervers, High Order Sliding Mode Observers for PMSM, Adaptive Interconnected duction Motor, Conclusions.	10
Revised Bloom's Taxonomy Level	L_1 - Remembering, L_2 - Understanding, L_3 - Applying.	
Module-4		
High-Order Sliding Robust Induction 1	Motor Controls Designs (PMSM and IPMSM): Backstepping Control, Mode Control, Conclusions. Motor Controls Design (IM): Field-Oriented Control, Integral Backstepping Oriented Control, High-Order Sliding Mode Control, Conclusions.	10
Revised Bloom's Taxonomy Level	L_1 - Remembering, L_2 - Understanding, L_3 - Applying.	
Module-5		
Sensorless Control, Sensorless Output	Feedback Control for SPMSM and IPMSM: Robust Adaptive Backstepping Robust Adaptive High Order Sliding Mode Control, Conclusions. Feedback Control for Induction Motor: Classical Sensorless Field-Oriented aptive Observer-Backstepping Sensorless Control, Robust Adaptive High Order rol, Conclusions. ■	10
	L_1 - Remembering, L_2 - Understanding, L_3 - Applying.	-

18ECD323 SENSORLESS AC MOTOR CONTROL

(Professional Elective Course) (continued)

Course outcomes:

At the end of the course the student will be able to:

- Describe the mechanical and electrical behavior of alternating current (AC) machines.
- Models the machines using Clark and Park transformations.
- Explain the application of observability theory and observer normal forms to AC machines.
- Design observers for nonlinear systems, adoptive interconnected observers and higher order sliding mode observers for PMSM.
- Design a robust controller for AC motors by back stepping techniques and sliding mode technique.
- Perform the feedback control of AC motors using robust controllers.

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Design / development of solutions.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module.

Textbook 1 Sensorless AC Electric Motor Control Robust Advanced Design Techniques and Applications Alain Glumineau et al Springer 2015

M.TECH POWER COMPUTER APPLICATION IN INDUSTRIAL DRIVES (ECD) Outcome Based Education(OBE) and Choice Based Credit System (CBCS) SEMESTER - III PLC APPLICATIONS IN ELECTRIC DRIVES (Professional Floative Course)

PLC APPLICATIONS IN ELECTRIC DRIVES (Professional Elective Course)					
Subject Code	18ECD331	CIE Marks	40		
Number of Lecture Hours/Week	04	Exam Hours	03		
Total Number of Lecture Hours	50	SEE Marks	60		
Credits – 04					

- To impart the fundamental knowledge and advantages of PLC.
- To understand and analyse the ladder diagrams.
- To gain a thorough knowledge of programming language and internal relays.
- To explore the principles of timers, counters and registers.
- To gain a thorough knowledge of application of PLC to various electrical machines.

To gain a thorough knowledge of application of PLC to various electrical machines.		
Module-1	Teaching Hours	
INTRODUTION: Introduction to Programmable logic controller (PLC), role in automation	10	
(SCADA), Advantages and disadvantages, hardware, internal architecture, sourcing and sinking,		
characteristics of I/O Devices, list of input and output devices, examples of applications. I/O		
processing, input/output units, signal Conditioning, remote connections, networks, processing		
inputs I/O addresses.		
PROGRAMMING: Ladder programming- ladder diagrams, logic functions, latching, multiple		
outputs, Entering programs, functional blocks, programme examples like location of stop and		
emergency switches.		
Revised Bloom's L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.		
Taxonomy Level		
Module-2		
PROGRAMMING LANGUAGES: Instruction list, sequential functions charts and structured text,	10	
jump And call subroutines.		
INTERNAL RELAYS: ladder programmes, battery- backed relays, one - shot operation, set and reset,		
Master control relay.		
Revised Bloom's L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.		
Taxonomy Level		
Module-3		
Programming Timers : Mechanical timing relays, timer instructions, on-delay timer instructions, off-	10	
delay timer instructions, retentive timer, cascading timer.		
Programming counters: Counter instructions, up-counter, down-counter, cascading counters,		
incremental encoder-counter applications, combining counter and timer functions		
Revised Bloom's L_2 – Understanding, L_3 – Applying, L_4 – Analysing, L_5 – Evaluating.		
Taxonomy Level		
Module-4		
Program control instructions: Master control reset instructions, jump instructions, subroutine	10	
functions, immediate input and immediate output instructions, forcing external I/O addresses,		
safety circuitry, selectable timed interrupt, fault routine, temporary end instructions, suspend		
instruction.Data manipulation instruction, math instruction.		
Sequencer and Shift register instructions: Mechanical sequencer, sequencer instructions,		
sequencer programs, bit shift registers, word shift operations.		
Revised Bloom's L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.		
Taxonomy Level		
Module-5	•	
PLC installation practices, editing and troubleshooting: Leaky inputs and outputs, grounding,	10	
program editing and commissioning, programming and monitoring, voltage variations and searches.		
Applications of PLC in controlling DC motors control of induction motors using PLC.		

18ECD331 PLC APPLICATIONS IN ELECTRIC DRIVES (Professional Core Course) (continued)

Revised Bl	oom's
Taxonomy	Level

 $L_1-Remembering,\,L_2-Understanding,\,L_3-Applying,\,L_4-Analysing.$

Course outcomes:

At the end of the course the student will be able to:

- Understand and analyse the ladder diagrams.
- Program internal relays.
- Explore the principles of timers, counters and registers.
- Gain a thorough knowledge of application of PLC to various electrical machines.

Graduate Attributes (As per NBA)

Engineering Knowledge, Problem Analysis, Design / development of solutions, Modern Tool Usage, Engineers and society, Ethics, Individual and Team work, Communication, Lifelong Learning.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

Text/Reference Books

1	Programmable Logic controllers	Frank D. Petruzella	McGraw Hill	4 th Edition, 2016
2	Programmable Logic controllers	W Bolton	Elsevier- newness	5 th Edition, 2009
3	Programmable logic controllers - principles and applications	John W Webb, Ronald A Reis	Pearson education,	5 th Edition, 2007
4	Programmable Controller Theory and Applications	A Bryan, E. A Bryan	An industrial text Company publication	2 nd edition, 1997
5	Programmable Controllers, an Engineers Guide	E. A Paar	Newness	3 rd edition, 2003

SEMESTER - III

AC DRIVES WITH INVERTER OUTPUT FILTERS (Professional Elective Course)					
Course Code 18ECD332 CIE Marks 40					
Number of Lecture Hours/Week	04	Exam Hours	03		
Total Number of Lecture Hours	50	SEE Marks	60		
Credits - 04					

- To give an overview of AC drives with filters, to explain the problems associated with the ac drives in voltage and current common mode and the voltage source inverter supply effects.
- To explain modeling of a squirrel cage motor, Per-Unit System, and Machine Parameters, the structure and operation of output filter model and its design.
- To explain the estimation state variables for drive systems with a sinusoidal filter and study of state observer with a filter simulator using different models.
- To explain the control of an induction motor operating in closed loop without a speed sensor by different methods considering a sinusoidal filter as the control object and to describe predictive motor current control for a drive system with a motor choke.
- To explain the diagnostics of drives and faults in rotor in closed loop control based on the analysis of the

Module-1	modeling, simulation and control of multiphase drives with induction motor and L	Teachir
	TATEL D. L. C. LO. L. CLOD.	Hours
	th LC Filters: Preliminary Remarks General Overview of AC Drives with	10
	ers, Remarks on Simulation Examples.	
	Drives and Voltage Source Inverter Supply Effects: Effects Related to ltage, Determination of the Induction Motor CM Parameters, Prevention of	
	rrent: Passive Methods, Active Systems for Reducing the CM Current, Common	
	action by PWM Algorithm Modifications.	
Revised Bloom's	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Taxonomy Level Module-2		
	ction Machine: Introduction, Inverse-Γ Model of Induction Machine, Per-Unit	10
	arameters, Simulation Examples. ilters: Structures and Fundamentals of Operations, Output Filter Model, Design	
	Filters, dV/dt Filter, Motor Choke, Simulation Examples.	
Revised Bloom's	L ₁ – Remembering, L ₂ – Understanding, L ₃ – Applying, L ₄ – Analysing.	
Taxonomy Level	L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.	
Module-3		ı
with LC Filter Simu with Extended Mod	State Variables in the Drive with LC Filter: Introduction, The State Observer ulator, Speed Observer with Simplified Model of Disturbances, Speed Observer lel of Disturbances, Speed Observer with Complete Model of Disturbances, erating for Rotating Coordinates, Speed Observer Based on Voltage Model of	10
Induction Motor, S	peed Observer with Dual Model of Stator Circuit, Adaptive Speed Observer, bserver, Simulation Examples. ■	
Induction Motor, S Luenberger Flux Ol Revised Bloom's		
Induction Motor, S Luenberger Flux Ol Revised Bloom's Taxonomy Level	bserver, Simulation Examples.	
Induction Motor, S Luenberger Flux Ol Revised Bloom's Taxonomy Level Module-4 Control of Inducti	bserver, Simulation Examples. \blacksquare $L_1 - \text{Remembering}, L_2 - \text{Understanding}, L_3 - \text{Applying}, L_4 - \text{Analysing}.$ on Motor Drives with LC Filters: Introduction, A Sinusoidal Filter as the	10
Induction Motor, S Luenberger Flux Ol Revised Bloom's Taxonomy Level Module-4 Control of Inducti Control Object, Fie	bserver, Simulation Examples. ■ L ₁ – Remembering, L ₂ – Understanding, L ₃ – Applying, L ₄ – Analysing. on Motor Drives with LC Filters: Introduction, A Sinusoidal Filter as the eld Oriented Control, Nonlinear Field Oriented Control, Multiscalar Control,	10
Induction Motor, S Luenberger Flux Ol Revised Bloom's Taxonomy Level Module-4 Control of Inducti Control Object, Fie Electric Drive with	bserver, Simulation Examples. ■ L ₁ – Remembering, L ₂ – Understanding, L ₃ – Applying, L ₄ – Analysing. on Motor Drives with LC Filters: Introduction, A Sinusoidal Filter as the eld Oriented Control, Nonlinear Field Oriented Control, Multiscalar Control, Load-Angle Control, Direct Torque Control with Space Vector Pulse Width	10
Induction Motor, S Luenberger Flux Ol Revised Bloom's Taxonomy Level Module-4 Control of Inducti Control Object, Fie Electric Drive with Modulation, Simul	bserver, Simulation Examples. ■ L ₁ – Remembering, L ₂ – Understanding, L ₃ – Applying, L ₄ – Analysing. on Motor Drives with LC Filters: Introduction, A Sinusoidal Filter as the eld Oriented Control, Nonlinear Field Oriented Control, Multiscalar Control, Load-Angle Control, Direct Torque Control with Space Vector Pulse Width ation Examples.	10
Induction Motor, S Luenberger Flux Ol Revised Bloom's Taxonomy Level Module-4 Control of Inducti Control Object, Fie Electric Drive with Modulation, Simul Current Control o	bserver, Simulation Examples. ■ L ₁ – Remembering, L ₂ – Understanding, L ₃ – Applying, L ₄ – Analysing. on Motor Drives with LC Filters: Introduction, A Sinusoidal Filter as the eld Oriented Control, Nonlinear Field Oriented Control, Multiscalar Control, Load-Angle Control, Direct Torque Control with Space Vector Pulse Width	10
Induction Motor, S Luenberger Flux Ol Revised Bloom's Taxonomy Level Module-4 Control of Inducti Control Object, Fie Electric Drive with Modulation, Simul Current Control o	bserver, Simulation Examples. ■ L ₁ – Remembering, L ₂ – Understanding, L ₃ – Applying, L ₄ – Analysing. on Motor Drives with LC Filters: Introduction, A Sinusoidal Filter as the eld Oriented Control, Nonlinear Field Oriented Control, Multiscalar Control, Load-Angle Control, Direct Torque Control with Space Vector Pulse Width ation Examples. f the Induction Motor: Introduction, Current Controller, Investigations,	10
Induction Motor, S Luenberger Flux Ol Revised Bloom's Taxonomy Level Module-4 Control of Inducti Control Object, Fie Electric Drive with Modulation, Simul Current Control o Simulation Example	bserver, Simulation Examples. ■ L ₁ – Remembering, L ₂ – Understanding, L ₃ – Applying, L ₄ – Analysing. on Motor Drives with LC Filters: Introduction, A Sinusoidal Filter as the eld Oriented Control, Nonlinear Field Oriented Control, Multiscalar Control, Load-Angle Control, Direct Torque Control with Space Vector Pulse Width ation Examples. f the Induction Motor: Introduction, Current Controller, Investigations,	10

18ECD332 AC DRIVES WITH INVERTER OUTPUT FILTERS (Professional Fleetive, Course) (continued)

(Professional Elective Course) (continued)		
Module-5	Teaching	
	Hours	
Diagnostics of the Motor and Mechanical Side Faults: Introduction, Drive Diagnosis Using Motor	10	
Torque Analysis, Diagnosis of Rotor Faults in Closed-Loop Control, Simulation Examples of		
Induction Motor with Inverter Output Filter and Load Torque Estimation, Conclusions.		
Multiphase Drive with Induction Motor and an LC Filter: Introduction, Model of a Five-Phase		
Machine, Model of a Five-Phase LC Filter, Five-Phase Voltage Source Inverter, Control of Five-		
Phase Induction Motor with an LC Filter, Speed and Flux Observer, Induction Motor and an LC		
Filter for Five-Phase Drive, Investigations of Five-Phase Sensorless Drive with an LC Filter, FOC		
Structure in the Case of Combination of Fundamental and Third Harmonic Currents, Simulation		
Examples of Five-Phase Induction Motor with a PWM Inverter.		
Revised Bloom's L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.		
Taxonomy Level		

Course outcomes:

At the end of the course the student will be able to:

- Explain the problems associated with the ac drives in voltage and current common mode.
- Explain the effects of voltage source inverter supply.
- Explain modeling of a squirrel cage motor and machine Parameters.
- Explain the structure and operation of output filter and its design.
- Explain the estimation state variables for drive systems with a sinusoidal filter.
- Explain closed loop control of an induction motor and predictive motor current control for a drive system.
- Explain the diagnostics of drives and faults in rotor in closed loop control.
- Explain modeling, simulation and control of multiphase drives. ■

Graduate Attributes (As Per NBA):

Engineering Knowledge, Problem Analysis, Conduct investigations of complex Problems, Communication.

Question Paper pattern:

- The question Paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

Textbook 1 Variable Speed AC drives with inverter Output Filters Jaroslaw Guzinski et al Wiley 2015

SEMESTER - III

SNEAK CIRCUITS IN CONVERTERS (Professional Elective Course)					
Course Code 18ECD333 CIE Marks 40					
Number of Lecture Hours/Week	04	Exam Hours	03		
Total Number of Lecture Hours	50	SEE Marks	60		
Credits - 04					

- To give an introduction of sneak circuit, explain sneak circuits in power electronic converters, and an overview of definition, history, and analysis methods for sneak circuits.
- To analyze the sneak circuits in different converter circuits
- To discuss some sneak circuit phenomena in soft-switching converters, and multi resonant converters. Z –source inverter and synchronous DC DC converters.
- To apply graph theory to discover the sneak circuit phenomenon using paths and mode analysis. In converters.
- To explain the methods to eliminate sneak circuits in power electronic converters and utilization of sneak circuits to improve the performance of power electronic converters. ■

	1 1	
Module-1		Teaching Hours
Sneak Circuit and	Power Electronic Systems: Reliability of Power Electronic Systems, Sneak	10
	uit Analysis, Power Electronic System and Sneak Circuit Analysis.	
	Resonant Switched Capacitor Converters: Introduction, Sneak Circuits of	
	ter, Sneak Circuits of High-Order RSC Converter. ■	
Revised Bloom's Taxonomy Level	L_1 - Remembering, L_2 - Understanding, L_3 - Applying, L_4 - Analysing.	
Module-2		
	DC-DC Converters: Introduction, Buck Converter, Boost Converter, Buck-Boost	10
	Circuit Conditions of Buck, Boost, and Buck-Boost Converters, Cúk Converter,	
Sepic Converter, Zo	eta Converter, Sneak Circuit Conditions of Cúk, Sepic, and Zeta Converters.	
Revised Bloom's	L_1 - Remembering, L_2 - Understanding, L_3 - Applying, L_4 - Analysing.	
Taxonomy Level		
Module-3		
	Soft-Switching Converters: Introduction, Sneak Circuits of Full-Bridge ZVS	10
PWM Converter, S	neak Circuits of Buck ZVS Multi-Resonant Converter, Sneak Circuits of Buck	
ZVT PWM Conver	ter.	
Sneak Circuits of	other Power Electronic Converters: Introduction, Sneak Circuits of Z-Source	
Inverter, Sneak Cire	cuits of Synchronous DC-DC Converters. ■	
Revised Bloom's Taxonomy Level	L_1 - Remembering, L_2 - Understanding, L_3 - Applying, L_4 - Analysing.	
Module-4		
	h Analysis Method for Power Electronic Converters: 1 Introduction, Basic	10
	rcuit Path Analysis Based on Adjacency Matrix, Sneak Circuit Path Analysis	
Based on Connection	on Matrix, Sneak Circuit Path Analysis Based on Switching Boolean Matrix,	
Comparison of Thr	ee Sneak Circuit Path Analysis Methods.	
Sneak Circuit Mo	de Analysis Method for Power Electronic Converters: Introduction, Mesh	
Combination Analy	rtical Method, Sneak Operating Unit Analytical Method, Sneak Circuit Operating	
Mode Analytical M	lethod, Results of Sneak Circuit Mode Analysis Method on Cúk Converter.	
Revised Bloom's Taxonomy Level	L_1 - Remembering, L_2 - Understanding, L_3 - Applying, L_4 - Analysing.	

18ECD333 SNEAK CIRCUITS IN CONVERTERS

(Professional Elective Course) (continued)		
Module-5	Teaching Hours	
Elimination of Sneak Circuits in Power Electronic Converters: Introduction, Sneak Circuit Elimination for RSC Converters, Sneak Circuit Elimination for Z-Source Inverter, Sneak Circuit Elimination for Buck ZVT PWM Converter. Application of Sneak Circuits in Power Electronic Converters: Introduction, Improvement of Power Electronic Converter Based on Sneak Circuits, Reconstruction of Power Electronic Converter Based on Sneak Circuits, New Functions of Power Electronic Converter Based on Sneak Circuits, Fault Analysis of Power Electronic Converter Based on Sneak Circuits. Revised Bloom's	10	
Taxonomy Level		

Course outcomes:

At the end of the course the student will be able to:

- Identify the presence of sneak circuit in power electronic converters.
- Analyze sneak circuit in power electronic converters.
- Discuss some sneak circuit phenomena in converters and inverters.
- Use graph theory to discover the sneak circuit phenomenon in converters using paths and mode analysis.
- Explain the methods to eliminate sneak circuits in power electronic converters.
- Explain utilization of sneak circuits to improve the performance of power electronic converters.

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Design / development of solutions, Conduct investigations of complex Problems, Lifelong Learning.

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2 full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module.

1	Sneak Circuits of Power Electronic Converters	Bo Zhang and Dongyuan Qiu	Wiley	2015

PROJECT WORK PHASE – 1					
Subject Code	18ECD34	CIE Marks	100		
Number of Practical Hours/Week	02	Exam Hours			
Total Number of Practical Hours		SEE Marks			
a					

Credits - 02

Course objectives:

- Support independent learning.
- Guide to select and utilize adequate information from varied resources maintaining ethics.
- Guide to organize the work in the appropriate manner and present information (acknowledging the sources) clearly.
- Develop interactive, communication, organisation, time management, and presentation skills.
- Impart flexibility and adaptability.
- Inspire independent and team working.
- Expand intellectual capacity, credibility, judgement, intuition.
- Adhere to punctuality, setting and meeting deadlines.
- Instil responsibilities to oneself and others.
- Train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas.

Project Phase-1 Students in consultation with the guide/s shall carry out literature survey/ visit industries to finalize the topic of the Project. Subsequently, the students shall collect the material required for the selected project, prepare synopsis and narrate the methodology to carry out the project work.

Seminar: Each student, under the guidance of a Faculty, is required to

- Present the seminar on the selected project orally and/or through power point slides.
- Answer the queries and involve in debate/discussion.
- Submit two copies of the typed report with a list of references.

The participants shall take part in discussion to foster friendly and stimulating environment in which the students are motivated to reach high standards and become self-confident. ■

Revised Bloom's	L_3 – Applying, L_4 – Analysing, L_5 – Evaluating, L_6 – Creating.
Taxonomy Level	

Course outcomes:

At the end of the course the student will be able to:

- Demonstrate a sound technical knowledge of their selected project topic.
- Undertake problem identification, formulation and solution.
- Design engineering solutions to complex problems utilising a systems approach.
- Communicate with engineers and the community at large in written an oral forms.
- Demonstrate the knowledge, skills and attitudes of a professional engineer.

Graduate Attributes (As per NBA)

Engineering Knowledge, Problem Analysis, Individual and Team work, Communication.

Continuous Internal Evaluation

CIE marks for the project report (50 marks), seminar (30 marks) and question and answer (20 marks) shall be awarded (based on the quality of report and presentation skill, participation in the question and answer session by the student) by the committee constituted for the purpose by the Head of the Department. The committee shall consist of three faculty from the department with the senior most acting as the Chairperson.

INTERNSHIP / PROFESSIONAL PRACTICE					
Subject Code	18ECDI35	CIE Marks	40		
Number of Practical Hours/Week		Exam Hours	03		
Total Number of Practical Hours		SEE Marks	60		

Credits - 06

Course objectives:

Internship/Professional practice provide students the opportunity of hands-on experience that include personal training, time and stress management, interactive skills, presentations, budgeting, marketing, liability and risk management, paperwork, equipment ordering, maintenance, responding to emergencies etc. The objective are further,

- To put theory into practice.
- To expand thinking and broaden the knowledge and skills acquired through course work in the field.
- To relate to, interact with, and learn from current professionals in the field.
- To gain a greater understanding of the duties and responsibilities of a professional.
- To understand and adhere to professional standards in the field.
- To gain insight to professional communication including meetings, memos, reading, writing, public speaking, research, client interaction, input of ideas, and confidentiality.
- To identify personal strengths and weaknesses.
- To develop the initiative and motivation to be a self-starter and work independently. ■

Internship/Professional practice: Students under the guidance of internal guide/s and external guide shall take part in all the activities regularly to acquire as much knowledge as possible without causing any inconvenience at the place of internship.

Seminar: Each student, is required to

- Present the seminar on the internship orally and/or through power point slides.
- Answer the queries and involve in debate/discussion.
- Submit the report duly certified by the external guide.

The participants shall take part in discussion to foster friendly and stimulating environment in which the students are motivated to reach high standards and become self-confident.

Revised Bloom's	L_3 – Applying, L_4 – Analysing, L_5 – Evaluating, L_6 – Creating
Taxonomy Level	

Course outcomes:

At the end of the course the student will be able to:

- Gain practical experience within industry in which the internship is done.
- Acquire knowledge of the industry in which the internship is done.
- Apply knowledge and skills learned to classroom work.
- Develop a greater understanding about career options while more clearly defining personal career goals.
- Experience the activities and functions of professionals.
- Develop and refine oral and written communication skills.
- Identify areas for future knowledge and skill development.
- Expand intellectual capacity, credibility, judgment, intuition.
- Acquire the knowledge of administration, marketing, finance and economics.

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Design / development of solutions, Conduct investigations of complex Problems, Modern Tool Usage, Engineers and society, Environment and sustainability, Ethics, Individual and Team work, Communication.

18ECDI35 INTERNSHIP / PROFESSIONAL PRACTICE (continued)

Continuous Internal Evaluation

CIE marks for the Internship/Professional practice report (20 marks), seminar (10 marks) and question and answer session (10 marks) shall be awarded (based on the quality of report and presentation skill, participation in the question and answer session by the student) by the committee constituted for the purpose by the Head of the Department. The committee shall consist of three faculty from the department with the senior most acting as the Chairperson.

Semester End Examination

SEE marks for the internship report (30 marks), seminar (20 marks) and question and answer session (10 marks) shall be awarded (based on the quality of report and presentation skill, participation in the question and answer session) by the examiners appointed by the University.

IVSEMESRER M.Tech COMPUTER APPLICATIONS IN INDUSTRIAL DRIVES

SENIESTER - IV					
PROJECT WORK PHASE -2					
Subject Code	18ECD41	CIE Marks	40		
Number of Practical Hours/Week	04	Exam Hours	03		
Total Number of Practical Hours		SEE Marks	60		
G 71. AA					

Credits - 20

Course objectives:

- To support independent learning.
- To guide to select and utilize adequate information from varied resources maintaining ethics.
- To guide to organize the work in the appropriate manner and present information (acknowledging the sources) clearly.
- To develop interactive, communication, organisation, time management, and presentation skills.
- To impart flexibility and adaptability.
- To inspire independent and team working.
- To expand intellectual capacity, credibility, judgement, intuition.
- To adhere to punctuality, setting and meeting deadlines.
- To instil responsibilities to oneself and others.
- To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas.

Project Work Phase - II: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

Revised Bloom's L_3 – Applying, L_4 – Analysing, L_5 – Evaluating, L_6 – Creating **Taxonomy Level**

Course outcomes:

At the end of the course the student will be able to:

- Present the project and be able to defend it.
- Make links across different areas of knowledge and to generate, develop and evaluate ideas and information so as to apply these skills to the project task.
- Habituated to critical thinking and use problem solving skills
- Communicate effectively and to present ideas clearly and coherently in both the written and oral forms.
- Work in a team to achieve common goal.
- Learn on their own, reflect on their learning and take appropriate actions to improve it. ■

Graduate Attributes (As per NBA):

Engineering Knowledge, Problem Analysis, Design / development of solutions, Conduct investigations of complex Problems, Modern Tool Usage, Engineers and society, Environment and sustainability, Ethics, Individual and Team work, Communication.

Continuous Internal Evaluation:

Project Report: 20 marks. The basis for awarding the marks shall be the involvement of the student in the project and in the preparation of project report. To be awarded by the internal guide in consultation with external guide if any.

Project Presentation: 10 marks.

The Project Presentation marks of the Project Work Phase -II shall be awarded by the committee constituted for the purpose by the Head of the Department. The committee shall consist of three faculty from the department with the senior most acting as the Chairperson.

Question and Answer: 10 marks.

The student shall be evaluated based on the ability in the Question and Answer session for 10 marks.

Semester End Examination

SEE marks for the project report (30 marks), seminar (20 marks) and question and answer session (10 marks) shall be awarded (based on the quality of report and presentation skill, participation in the question and answer session) by the examiners appointed by the University.