VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI.

Scheme of Teaching and Examinations and Syllabus MTech Material Science & Technology (MST) (Effective from Academic year 2020 - 21)

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI Scheme of Teaching and Examinations – 2020 - 21 M Tech MATERIAL SCIENCE & TECHNOLOGY (MST) Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

I SEMESTER

				Te	aching per W	Hours /eek		Examination			Credits
Sl. No	Course	Course Code	Course Title	Theory	Practical	Skill Development Activities (SDA)	Duration in hours	CIE Marks	SEE Marks	Total Marks	
1	PCC	20MST11	Applied Mathematics	03		02	03	40	60	100	4
2	PCC	20 MST12	Computational Techniques	03		02	03	40	60	100	4
3	PCC	20 MST13	Materials for Cryogenic & High Temperature applications	03		02	03	40	60	100	4
4	PCC	20 MST14	Nano Science & Nano Materials	03		02	03	40	60	100	4
5	PCC	20 MST15	Mechanical Behaviour of thin films	03		02	03	40	60	100	4
6	PCC	20 MSTL16	Material Characterization Lab - 1		04		03	40	60	100	2
7	PCC	20RMI17	Research Methodology and IPR	02			03	40	60	100	2
	TOTAL				04	10	21	280	420	700	24

Note: PCC: Professional core.

Skill development activities:

Students and course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills.

The students should interact with industry (small, medium and large), understand their problems or foresee what can be undertaken for study in the form of research/ testing / projects, and for creative and innovative methods to solve the identified problem.

The students shall

(1) Gain confidence in modelling of systems and algorithms.

(2) Work on different software/s (tools) to Simulate, analyse and authenticate the output to interpret and conclude. Operate the simulated system under changed parameter conditions to study the system with respect to thermal study, transient and steady state operations, etc.

(3) Handle advanced instruments to enhance technical talent.

(4) Involve in case studies and field visits/ field work.

(5) Accustom with the use of standards/codes etc., to narrow the gap between academia and industry.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc.

Internship: All the students have to undergo mandatory internship of 6 weeks during the vacation of I and II semesters and /or II and III semesters. A University examination shall be conducted during III semester and the prescribed credit shall be counted for the same semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared as fail in internship course and have to complete the same during the subsequent University examination after satisfying the internship requirements.

Note: (i) Four credit courses are designed for 50 hours Teaching – Learning process.

(ii) Three credit courses are designed for 40 hours Teaching – Learning process.

(iii) Two credit courses are designed for 25 hours Teaching – Learning process

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI Scheme of Teaching and Examinations – 2020 - 21 M. Tech MATERIAL SCIENCE & TECHNOLOGY (MST) Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

II SEMESTER

				Teac	ching Hou	urs /Week		Exan	nination		
Sl. No	Course	Course Code	Course Title	Theory	Practical/ seminar	Skill Development Activities (SDA)	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	PCC	20 MST21	Smart Materials & Structures	03		02	03	40	60	100	4
2	PCC	20 MST22	Testing of Materials	03		02	03	40	60	100	4
3	PCC	20XXX23	Advanced Foundry Technology	03		02	03	40	60	100	4
4	PEC	20 MST24X	Professional elective 1	04			03	40	60	100	4
5	PEC	20 MST25X	Professional elective 2	04			03	40	60	100	4
6	PCC	20 MSTL26	Material Characterization Lab - 2		04		03	40	60	100	2
7	PCC	20 MST27	Technical Seminar		02			100		100	2
		T	OTAL	17	06	06	18	340	360	700	24
Note	e: PCC: Pro	fessional core, P	EC: Professional Elective.								

Pro	dessional Elective 1		Professional Elective 2
Course Code under 20XXX24X	Course title	Course Code under 20XXX25X	Course title
20 MST241	Surface Treatment & finishing	20 MST251	Modelling, Simulation & Analysis of Manufacturing Systems
20 MST242	Agile Manufacturing	20 MST252	Bio Materials & Technology
20 MST243	Advanced Moulding Techniques	20 MST253	Mechanical Behaviour of Materials
20 MST244	Advances in Materials and Processing	20 MST254	Non – Destructive Testing

Note:

1. Technical Seminar: CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide/co-guide, if any, and a senior faculty of the department. Participation in the seminar by all postgraduate students of the same and other semesters of the programme shall be mandatory.

The CIE marks awarded for Technical Seminar, shall be based on the evaluation of Seminar Report, Presentation skill and Question and Answer session in the ratio 50:25:25.

2. Internship: All the students shall have to undergo mandatory internship of 6 weeks during the vacation of I and II semesters and /or II and III semesters. A University examination shall be conducted during III semester and the prescribed credit shall be counted in the same semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared as fail in internship course and have to complete the same during the subsequent University examination after satisfying the internship requirements.

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI Scheme of Teaching and Examinations – 2020 - 21 MTech Material Science & Technology (MST)

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

III SEMESTER

				Те	aching Ho /Week	Iours Examination					
SI. No	Course	Course Code	Course Title	Theory	Practical/ Mini –Project/ Internship	Skill Development activities (SDA)	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	PCC	20 MST31	Plastic Processing	03		02	03	40	60	100	4
2	PEC	20 MST32X	Professional elective 3	03			03	40	60	100	3
3	PEC	20 MST33X	Professional elective 4	03			03	40	60	100	3
4	Project	20 MST34	Project Work phase -1		02			100		100	2
5	PCC	20 MST35	Mini-Project		02			100		100	2
6	Internship	20 MSTI36	Internship	(Con the ir vacat seme and I	npleted du ntervening ion of I a sters and II semest	uring g ind II /or II ers.)	03	40	60	100	6
ТО	TAL			09	04	02	12	360	240	600	20
Note: PCC: Professional core, PEC: Professional Elective.											
	Professional elective 3					Profes	sional	electiv	/e 4		

110		-	
Course Code under 20XXX32X	Course title	Course Code under 20XXX33X	Course title
20 MST321	Experimental Methods in engineering	20 MST331	Electronic, Optical and Magnetic Properties of Materials
20 MST322	Manufacturing of Electronic Components	20 MST332	Particulate Technology
20 MST323	Non-Traditional Machining	20 MST333	Corrosion Science And Technology
20 MST324	Vacuum Science & Cryogenics	20 MST334	Reliability Engineering

Note:

1. Project Phase-1: Students in consultation with the guide/co-guide if any, shall pursue literature survey and complete the preliminary requirements of selected Project work. Each student shall prepare relevant introductory project document, and present a seminar.

CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide/co-guide if any, and a senior faculty of the department. The CIE marks awarded for project work phase -1, shall be based on the evaluation of Project Report, Project Presentation skill and Question and Answer session in the ratio 50:25:25. SEE (University examination) shall be as per the University norms.

2. Internship: Those, who have not pursued /completed the internship shall be declared as fail in internship course and have to complete the same during subsequent University examinations after satisfying the internship requirements. Internship SEE (University examination) shall be as per the University norms.

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI Scheme of Teaching and Examinations – 2020 - 21 M.Tech Material Science & Technology (MST)

Choice Based Credit System (CBCS) and Outcome Based Education(OBE)

IV SEMESTER

				Teaching /We	g Hours ek		Exan	nination		
Sl. No	Course	Course Code	Course Title	Theory	Practical/ Field work	Duration in hours	CIE Marks	SEE Marks Viva voce	Total Marks	Credits
1	Project	20 MST41	Project work phase -2		04	03	40	60	100	20
			TOTAL		04	03	40	60	100	20

Note:

1. Project Phase-2:

CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide/co-guide, if any, and a Senior faculty of the department. The CIE marks awarded for project work phase -2, shall be based on the evaluation of Project Report subjected to plagiarism check, Project Presentation skill and Question and Answer session in the ratio 50:25:25.

SEE shall be at the end of IV semester. Project work evaluation and Viva-Voce examination (SEE), after satisfying the plagiarism check, shall be as per the University norms.

APPLIED MATHEMATICS						
Course Code 20MST11 CIE Marks 40						
3:0:2	SEE Marks	60				
04	Exam Hours	03				
	THEMATICS 20MST11 3:0:2 04	THEMATICS 20MST11CIE Marks3:0:2SEE Marks04Exam Hours				

Module-1

Approximations and round off errors: Significant figures, accuracy and precision, error definitions, round off errors and truncation errors. Mathematical modelling and Engineering problem solving: Simple mathematical model, Conservation Laws of Engineering. Exercises to be given for solving in software tools

Module-2

Roots of Equations: Bracketing Methods-Graphical method, Bisection method, False position method, Newton-Raphson method, Secant Method. Multiple roots, Simple fixed-point iteration. Roots of polynomial-Polynomials in Engineering and Science, Muller's method, Bairstow's Method Graeffe's Roots Squaring Method.

Exercises to be given for solving in software tools

Module-3

Numerical Differentiation and Numerical Integration: Newton –Cotes and Guass Quadrature Integration formulae, Integration of Equations, Romberg integration, Numerical Differentiation Applied to Engineering problems, High Accuracy differentiation formulae. Exercises to be given for solving in software tools.

Module-4

System of Linear Algebraic Equations and Eigen Value Problems: Introduction, Direct methods, Cramer's Rule, Gauss Elimination Method, Gauss-Jordan Elimination Method, Triangularization method, Cholesky Method, Partition method, error Analysis for direct methods, Iteration Methods. Eigen values and Eigen Vectors: Bounds on Eigen Values, Jacobi method for symmetric matrices, Givens method for symmetric matrices, Householder's method for symmetric matrices, Rutishauser method for arbitrary matrices, Power method, Inverse power method. Exercises to be given for solving in software tools

Module-5

Linear Transformation: Introduction to Linear Transformation, The matrix of Linear Transformation, Linear Models in Science and Engineering Orthogonality and Least Squares: Inner product, length and orthogonality, orthogonal sets, Orthogonal projections, The Gram-Schmidt process, Least Square problems, Inner product spaces.

Exercises to be given for solving in software tools

Course outcomes:

At the end of the course the student will be able to:

1) Model some simple mathematical models of physical Applications.

2) Find the roots of polynomials in Science and Engineering problems.

3) Differentiate and integrate a function for a given set of tabulated

data, for Engineering Applications.

4. Knowledge of usage of software tools like Mathematica, CILab, Matlab etc.,

5. Application of software for problem solving.

Question paper pattern:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.

- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbook/ Textbooks

1. S.S. Sastry, Introductory Methods of Numerical Analysis, PHI, 2005.

2. Steven C. Chapra, Raymond P. Canale, Numerical Methods for Engineers, Tata McGraw Hill, 4th Ed, 2002.

Reference Books

.

1. Pervez Moin, Fundamentals of Engineering Numerical Analysis, Cambridge, 2010.

2. David. C. Lay, Linear Algebra and its applications, 3rd edition, Pearson Education, 2002

COMPUTATIONAL TECHNIQUES					
Course Code 20MST12 CIE Marks 40					
Teaching Hours/Week (L:P:SDA)	3:0:2	SEE Marks	60		
Credits 04 Exam Hours 03					
Mod	ule-1				

Design of Experiments: Factorial Design, Taguchi Techniques, ANOVA

Module-2

Artificial Intelligence: ANN, fuzzy Logic, Genetic Algorithm, Applications in Materials Engg.,

Module-3

Optimization Methods: Classical optimization methods, unconstrained minimization. Univariate, conjugate direction, gradient and variable metric methods, constrained minimization, feasible direction and projections. Integer and geometric programming

Module-4

Numerical Fluid Flow and Heat Transfer: Classification of PDE, Finite differences, Steady and unsteady conduction, explicit and implicit method.

Module-5

Finite element Methods: Introduction to I-D FEM; Problems in structural Mechanics using 2D elements, Plane stress, plain strain, axisymmetric analysis; three-dimensional analysis.

Course outcomes:

At the end of the course the student will be able to:

- Students will be in a position to Understand & Identify Techniques of Optimisation for real industry problems.
- Apply techniques to real time problems.
- Apply AI techniques in Material Engineering.
- Develop skill to solve simple beam problems using the steps of FEM
- Formulate element properties of 1D & 2D elements.

Question paper pattern:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.

- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module. ■

Textbook/ Textbooks

1. Design and analysis of experiments - Douglas C. Montgomery, 5th ed., John Wiley and Sons, 2001

2. Introduction to Finite Elements in Engineering - Tirupathi R. Chandrupatla and Ashok D. Belegundu, 2nd Ed., Prentice-Hall, 1997

Reference Books

3. Artificial Neural Networks - B. Yegnanarayana, Prentice-Hall of India, 1999

4. Taguchi techniques for quality engineering - Phillip J. Ross, McGraw-Hill Book company, 1996

5. Numerical heat transfer and fluid flow- Suhas V. Patankar, Hemisphere Publishing Corporation, 1980

MATERIALS FOR	CRYOGENIC AN	D HIGH TEMPRATURE A	APPLICATIONS	
Course Code	20MST13	CIE Marks	40	
Teaching Hours/Week (L:P:SDA)	3:0:2	SEE Marks	60	
Credits	04	Exam Hours	03	
	M	lodule-1	•	
Introduction: Historical Backa helium, Liquid nitrogen and L behind the production of low Thompson Effect –Magnetic	ground – Introductio iquid oxygen and th temperature –Expar effect – Ortho and F	on to Cryogenic propellants – neir properties. Production of nsion engine heat exchangers - Para H2 – Helium4 and Helium	Liquid hydrogen, Liquid low Temperature: Theory - Cascade process Joule n3.	
	Μ	lodule-2		
Efficiency of Cryogenic Syste The fraction liquefied – Cooli balance Methods. Cycles Of C –Throttle expansion cycles –	ems: Types of losses ng coefficient of pe Cryogenic Plant: Cla Expander cycles – T	s and efficiency cycles –Speci rformance Thermodynamic ef assification of cryogenic cycle Thermodynamic analysis – Nu	fic amount of cooling – ficiency – The energy es – The structure of cycle merical problem s.	
	Μ	lodule-3		
Cryogenic Fluid Storage And porous insulated lines, vacuur Systems for Low Temperature thermometers, thermo couples pressure thermometers.	Transfer Systems: I n insulated lines, cr es: Introduction, Te s, constant volume g	Basic storage vessels, insulation yogenic valves, cool down pro- mperature scales and fixed point gas thermometers, magnetic the	ons, un insulated and ocess. Measurement ints, Metallic resistance termometers, vapour	
	Μ	lodule-4		
Vacuum Technology: Importa mechanical vacuum pumps, d	nce flow regimes in iffusion pumps, vac	n vacuum system, components uum gauges and valves.	s of vacuum system,	
	Μ	lodule-5		
Cryogenic In Automotive and simulation – storage of cryoge materials – Cryogenic loading Phenomenon of tank collapse	Aerospace Applica en in liquids- Effect g problems – Zero g – Elimination of Ge	tions: Cryogenic liquids in mi of cryogenic liquids on prope ravity problems associated wi eysering effect in missiles.	issile launching and space orties of Aerospace th cryogenic propellants –	
Course outcomes:				
At the end of the course the st Analyse the propertiand liquid level mea Have Knowledge of Acquire knowledge Have knowledge of Apply knowledge of	udent will be able to es of material at low surement at low ten Cryogenic systems of low temperature vacuum technology f cryogenics in pract	o: w temperature. Pressure, temp nperature. (PO-2). measurements. tical situations.	erature, flow,fluid quality	
Question paper pattern:				
The SEE question paper will to 60.	be set for 100 mark	s and the marks scored will b	e proportionately reduced	
 The question paper will have ten full questions carrying equal marks. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. Textbook/ Textbooks				
Cryogenics. Theory Processe	s & Applications by	Allyson E Haves, Nova Publ	ications -2013	
	PPrioutions by	······································		

. Cryogenic Systems, Barron, Oxford University, 1985.

Reference Books
1. Cryogenic Fundamentals, Haseldom.G. Academic Press, 1971.
2. Propellant Chemistry, Parner S.F. Reinhold publishing Corpn., New York 1985.
3. Mechanical Properties of Materials at Low Temperatures, Wigley D.A. (1971) Plenum Press, New

NANOSC	CIENCE AND	NANOMATERIALS		
Course Code	20MST14	CIE Marks	40	
Teaching Hours/Week (L:P:SDA)	3:0:2	SEE Marks	60	
Credits	04	Exam Hours	03	
	Modu	ıle-1		
Introduction To Nanoscience And Nanotec nanoscience and nanotechnology, scientifi structure, molecules and phases, energy at nanotechnology and nanomachines. Classi two dimensional nanostructure materials-c dependent phenomena, quantum dots nano ups approach, misnomers and misconcepti devices. Properties Of Nanomaterials: Mechanical properties – Electro chemical properties M of gas permeation and separation membrai characteristics evaluation, size effect in ser point, surface tension, wettability – specifi fictionalization – nanoparticles arranged st nanoparticle collectives by sintering and b behaviour – Single nanoparticle motion in between particles – Aggregation and disper	hierarchief fluid –Browni rsion, characte	rmo physical properties - ties -optical properties - ties -optical properties - ties -optical properties - ties -optical properties - ties and pore – Assembly of na hopores and nanocomposit - assembly. Nanoparticle an diffusion – Adsorption rization and control – Rhe	d interdisciplinary nature of to volume ratio, atomic , quantum effects, types of ional, one-dimensional and ics and nano composites, size pores, top down and bottom noscale materials and their Electrical properties Electric talytic property – properties of nanostructures and their , shape density – Melting anoparticles and res –Structure control of dispersion and aggression properties – interactions cology of slurry – Simulation	
of colloidal dispersion system				
	Modu	ıle-3		
Melting Point And Phase Transition Proce transition (SIMIT) nano-scale magnets, tra materials – chemical physical of atomic ar function of surface curvature – Electrostat proximity of solid surface-Vander Waals a Electrochemistry of nanomaterials – Diffu Nanoparticles, Transport in semiconductor Nano deposition of soft materials, Nano ca of inorganic nanoparticles by organic func closed –porosity silica particle- Developm Fabrication technique of organic nano crys control of nanoparticles in solvents – Deve functional skincare cosmetics using biodes	sses: quantum- insparent magr ad molecular cl ic stabilization attraction poten sion in Nanom Nanostructure talysis. Surfac tional groups I ent of photo ca stals and their of elopment of ne gradable PLGA	-size-effect (QSE) Size-ind netic materials and ultrahig usters. Surface energy – c – surface charge density-o tial. Photochemistry, Phot aterials, Nanoscale Heat th es, Transition Metal Atom e Modification Of Nanopa nstantaneous nano foamin talyst inserted into surface optical properties and mate w cosmetics based on nan- a nano spheres.	duced metal-insulator- gh-density magnetic recording hemical potential as a electric potential at the toconductivity, ransfer, Catalysis by Gold. s on Nanocarbon Surfaces, articles: Surface modification g method for fabrication of e of porous alumina silicate- erialization, Dispersion oparticles – Development of	
Module-4				
Application Of Quantum Dots For Bio-Medical Engineering: Bio- imaging with quantum dots – Pinpoint drug and gene delivery- delivery to the brain – Development of the thermo responsive magnetic nanoparticle and its deployment in the biotechnology field, Addressing of nanoparticles by using DNA molecules, Nanoparticle formation of DNA (globule transformation) – Development and multi-functionalization of high – functional separation membranes – Design of nanoparticles for oral delivery of peptide drugs.				
Module-5				
Smart Materials And Systems: Thermo res magneto strictive materials, ferrofluids, EF alloys and polymers, actuation methods, m	ponsive mater R and MR fluid measurements.	ials, piezoelectric material ls, biomimetic materials, s	s, electro strictive and mart gel, shape memory	

Course outcomes:

At the end of the course the student will be able to:

1. Demonstrate the working knowledge of nanotechnology principles and industry applications. (PO-2)

2. Design the nanoscale paradigm in terms of properties at the nanoscale dimension. (PO-2)

3. Apply key concepts in materials science, chemistry, physics, biology and engineering to the field of nanotechnology. (PO-2)

4. Identify current nanotechnology solutions in design, engineering and manufacturing. (PO-3)

5. Explain chemical reactivity on the basis of structure and electronic arrangements. (PO-2) Understand and interpret the melting point and phase transition of nano materials. (PO-1,4)

Question paper pattern:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.

- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbook/ Textbooks

1.. "Nanophysics and Nanotechnology" – An Introduction to ModernConcepts in Nanoscience, Edward L. Wolf Second Edition, John Wile y & Sons, 2006.

2. Nano: The essentials, Pradeep, T, McGraw Hill.

3. Introduction to Nano Technology, Poole, C.P and Owens, J.F, Wiley

- 1. "Surface Science Foundation of Catalysis and Nanoscience", K.W. Kolasinski –Wiley, 2002
- 2. Nano particles: From theory to applications, Schmid, G., Wiley VCH Verlag GmBH and Co

Reference Books

1. Nanoparticulate as Drug Carriers, Valdimir P, Torchilin (2006) imperial college press.

2. Nanomaterials and Nano systems for Bio-Medical Applications, M Reza Mozafari (2007) springer.

3. Nanotechnology – Basic science and emerging technologies Chapman and Hall/CRC (2002).

4. Nanomaterials and Nanotechnologies and design on introduction for engineers and architects, Micheal F.

MECHANI	CAL BEHAVIOUR O	F THIN FILMS	
Course Code	20MST15	CIE Marks	40
Teaching Hours/Week (L:P: SDA)	3:0:2	SEE Marks	60
Credits	04	Exam Hours	03
	Module-1		
Vacuum components and systems: Need for	or vacuum, ways to achi	eve vacuum, determination of vac	uum, dry
and vapour pumps, pressure measurement	gauges, conductance an	d other system design consideration	ons.
	Module-2		
Thin film deposition techniques: Physical a	and chemical vapour de	position techniques including mole	cular beam
epitaxy, laser ablation and hot wire and mi	crowave CVD techniqu	es. Film contamination, cosine law	/ of
deposition, conformal coverge and line of	sight deposition.		
	Module-3		
Growth of thin films: Thermodynamic and	kinetic considerations	of deposition of thin films by both	CVD and
PVD. In situ characterization of thin film d	leposition process.		
	Module-4		
Characterization of thin films: Different m	ethods of thickness mea	surements, electrical, optical, cher	nical and
structural property determination			
	Module-5		
Some important applications of thin films:	Hard and decorative co	atings, semiconductor thin films, o	organic thin
films.			
Course outcomes:			
At the end of the course the student will be	able to		
Students will be in a position to u	nderstand the science of	f thin films	
 Understanding of vacuum technol 	ogv		
• Knowledge of deposition technique	ies.		
Understanding of characterization	techniques of thin film	deposition.	
Apply knowledge to practical app	lications.		
Question paper pattern:	marks and the marks a	agreed will be proportionately redu	and to 60
The question paper will have ten f	full questions corrying a	qual marks	.cu to oo.
 Fach full question is for 20 marks 	un questions carrying e	quai marks.	
 There will be two full questions (x 	vith a maximum of four	sub questions) from each module	
 Fach full question will have sub q 	uestion covering all the	topics under a module	
 The students will have to answer f 	five full questions, selec	ting one full question from each m	nodule. ∎
	are full questions, seree	ang one run question nom each n	
Textbook/ Textbooks			
Materials science of thin films, M. Ohring,	Academic press, 2006		
2 Vacuum deposition of thin films I Hol	land Chanman and Hal	1	
Reference Books	iana, Chapillan anu Ha	1.	
3. Glow discharge processes, B. Chapman	, Wiley, New York.		
4. Thin film phenomena, K. Chopra, McGi	aw Hill, Yew York.		
5. I nin film materials: stress, defect forma	tion and surface evoluti	on. L. B. Freund, S. Suresh	
7 Principles of Chamical Vanar Deposition	n by D M Deletin M	IIII, MCOTAW IIII. K. Zurow Kluwer Acadomic Dub	lishor
8.Chemical Vapor Deposition by Pradeep	George, VDM Verles D	r. Mueller E.K.	1151101.

	MATERIAL CHARACTERIZATION LAB – 1				
Course Code 20MSTL16 CIE Marks				40	
Teaching	g Hours/Week (L:P: SDA)	0:4:0	SEE Marks	60	
Credits	dits 02 Exam Hours				
SI.	E-m outer oute				
NO		Experiments			
1.	Powder characterization using XRD, SEM and	BET, gas pycnom	neter		
2.	Thermal properties of materials, identification of materials based on their TG, DSC, DMA characteristic responses				
3.	3. Laboratory testing practice related to tests based on the mechanical properties of materials, e.g., hardness, elastic modulus, tensile strength etc.				
4.	. hands-on experience on the applications of metallography and optical microscopy, phase analysis using microscopic information.				
5.	hands-on experience in the area of microstructures of metal, ceramic and polymer materials using optical microscopy and SEM.				
6.	Phase identification using X-ray Diffraction				
7.	Study the effect of quenching media on micros	structure and hardn	ness of high-speed steels.		
8.	Establish relationship between hardness and microstructure of forged/rolled/extruded popular aerospace / light alloys.				
9.	Observation of specimens in TEM.				
Any 5 ex	xperiments can be done.				

RESEARCH METHO	ODOLOGY AND IP	R			
Course Code	20RMI17	CIE Marks	40		
Teaching Hours/Week (L:P:SDA)	1:0:2	SEE Marks	60		
Credits	02	Exam Hours	03		
Mod Research Methodology: Introduction, Meaning of Res	lule-1 search, Objectives of 1	Research, Motivation in Re	search,		
Research and Scientific Method, Importance of Knowir Good Research, and Problems Encountered by Research	e of Research, Resear ng How Research is D hers in India.	Cone, Research Process, Cri	teria of		
Defining the Research Problem: Research Problem Problem, Technique Involved in Defining a Problem, Au	n, Selecting the Pro n Illustration. ■	blem, Necessity of Defini	ng the		
Mod	lule-2				
Reviewing the literature: Place of the literature review problem, Improving research methodology, Broadening findings, How to review the literature, searching th Developing a theoretical framework, Developing a conce Research Design: Meaning of Research Design, New Important Concepts Relating to Research Design, Differ Designs, Important Experimental Designs. ■	v in research, Bringing g knowledge base in n e existing literature, eptual framework, Wr ed for Research Des rent Research Designs	g clarity and focus to your re- research area, Enabling con reviewing the selected lite riting about the literature rev- ign, Features of a Good I s, Basic Principles of Experi	esearch textual erature, viewed. Design, mental		
Mod	lule-3				
Design of Sampling: Introduction, Sample Design, Sar	mpling and Non-samp	ling Errors, Sample Survey	versus		
Census Survey, Types of Sampling Designs. Measurement and Scaling: Qualitative and Quant Goodness of Measurement Scales, Sources of Error in M Scaling Technics, Multidimensional Scaling, Deciding t Data Collection: Experimental and Surveys, Collect Selection of Appropriate Method for Data Collection, C	Census Survey, Types of Sampling Designs. Measurement and Scaling: Qualitative and Quantitative Data, Classifications of Measurement Scales, Goodness of Measurement Scales, Sources of Error in Measurement Tools, Scaling, Scale Classification Bases, Scaling Technics, Multidimensional Scaling, Deciding the Scale. Data Collection : Experimental and Surveys, Collection of Primary Data, Collection of Secondary Data Scalestion of Appropriate Method for Data Collection Case Study Method				
Mod	lule-4				
Testing of Hypotheses: Hypothesis, Basic Concepts Correst Statistics and Critical Region, Critical Value and Hypothesis Testing for Mean, Proportion, Variance, Proportions, for Difference of Two Variances, P-Value Hypothesis.	Testing of Hypotheses: Hypothesis, Basic Concepts Concerning Testing of Hypotheses, Testing of Hypothesis, Test Statistics and Critical Region, Critical Value and Decision Rule, Procedure for Hypothesis Testing, Hypothesis Testing for Mean, Proportion, Variance, for Difference of Two Mean, for Difference of Two Variances, P-Value approach, Power of Test, Limitations of the Tests of Hypothesis.				
Chi-square Test: Test of Difference of more than Two Goodness of Fit, Cautions in Using Chi Square Tests. ■	Proportions, Test of I	ndependence of Attributes,	Test of		
Mod	lule-5				
Interpretation and Report Writing: Meaning of Int Interpretation, Significance of Report Writing, Differ Report, Types of Reports, Oral Presentation, Mechanics Research Reports.	terpretation, Techniquer ent Steps in Writing s of Writing a Researce	e of Interpretation, Precau Report, Layout of the Re ch Report, Precautions for V	tion in esearch Writing		
Intellectual Property: The Concept, Intellectual Proper Regime in India, Patents Act, 1970, Trade Mark A Indications of Goods (Registration and Protection) A Varieties and Farmers' Rights Act, 2001,The Semi-Co Trade Secrets, Utility Models, IPR and Biodiversity, Competing Rationales for Protection of IPRs, Leadi Intellectual Property Organisation (WIPO),WIPO and Property, National Treatment, Right of Priority, Comm Names, Indications of Source, Unfair Competition, P Filing, Berne Convention for the Protection of Litera Protection, Trade Related Aspects of Intellectual Prop	erty System in India, Act, 1999, The Design Act1999, Copyright A onductor Integrated C The Convention on T ing International Inst WTO, Paris Conventi non Rules, Patents, M Patent Cooperation Th ary and Artistic Wor perty Rights(TRIPS) A	Development of TRIPS Co ns Act, 2000, The Geogra Act,1957,The Protection of Circuits Layout Design Act, Biological Diversity (CBD) ruments Concerning IPR, on for the Protection of Ind Marks, Industrial Designs, reaty (PCT), Advantages of ks, Basic Principles, Dura Agreement, Covered under	mplied aphical f Plant , 2000,) 1992, World dustrial , Trade of PCT tion of TRIPS		
Agreement, Features of the Agreement, Protection of Related Rights, Trademarks, Geographical indications,	or Intellectual Proper Industrial Designs, 1	ty under TRIPS, Copyrig Patents, Patentable Subject	gnt and Matter,		

Rights Conferred, Exceptions, Term of protection, Conditions on Patent Applicants, Process Patents, Other Use without Authorization of the Right Holder, Layout-Designs of Integrated Circuits, Protection of Undisclosed Information, Enforcement of Intellectual Property Rights, UNSECO.

Course outcomes:

At the end of the course the student will be able to:

- Discuss research methodology and the technique of defining a research problem
- Explain the functions of the literature review in research, carrying out a literature search, developing theoretical and conceptual frameworks and writing a review.
- Explain various research designs, sampling designs, measurement and scaling techniques and also different methods of data collections.
- Explain several parametric tests of hypotheses, Chi-square test, art of interpretation and writing research reports
- Discuss various forms of the intellectual property, its relevance and business impact in the changing global business environment and leading International Instruments concerning IPR. ■

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.
- Students will have to answer 5 full questions, selecting one full question from each module. ■

Textbooks

(1) Research Methodology: Methods and Techniques, C.R. Kothari, Gaurav Garg, New Age International, 4th Edition, 2018.

(2) Research Methodology a step-by-step guide for beginners. (For the topic Reviewing the literature under module 2), RanjitKumar,SAGE Publications,3rd Edition, 2011.

(3) Study Material (For the topic Intellectual Property under module 5),

Professional Programme Intellectual Property Rights, Law and Practice, The Institute of Company Secretaries of India, Statutory Body Under an Act of Parliament, September 2013.

Reference Books

(1) Research Methods: the concise knowledge base, Trochim, Atomic Dog Publishing, 2005.

(2) Conducting Research Literature Reviews: From the Internet to Paper, Fink A, Sage Publications, 2009.

*** END OF I SEMESTER ***

Course Code 20MST21 CIE Marks 40 Teaching Hours/Week (L:P:SDA) 3:0:2 SEE Marks 60 Credits 04 Exam Hours 03 Module-1 Smart Structures, Potential Facisbility of Smart Structures, Key Elements Of Smart Structures, Potential Facisbility of Smart Structures, Key Elements Of Smart Structures, Potential Facisbility of Smart Structures, Key Elements Of Smart Structures, Potential Facisbility of Smart Structures, Key Elements Of Smart Structures, Potential Facisbility of Smart Structures, Key Elements Of Smart Structures, Potential Rate effects, Inchworm Linear Motor. Beam Modelling with induced strain Actuation-single Actuators, dual Actuators, Pure Estension, Pure Bending harmonic excitation, Bernoulli-Euler beam Model, problems, Piezoelectrical Applications. Of SMA and Problems. ER and MR Fluids: Mechanisms and properties, Fluid Composition and behavior, The Bingham Plastic and Related Models, Pre-Yield Response. Post-Yield flow applications in Clatches, Dampers and Others. Vibration Absorbers: series and Parallel Damped Vibrations (Over View), Active Vibration Absorbers, Fiber Optics, Physical Phenomenca, Characteristics, Sensors, Fiber Optics in Crack Detection, applications, Control of Structures: Modelling, Control Strategies and Limitations, Active Structures in Practice. Wibration Absorbers: series and Parallel Damped Vibrations (Over View), Active Vibration Absorbers, Fiber Optics, Physical Phenomenca, Characteristics, Sensors, Tiber Optics in Crack Detection, applications. Vibration Absorbers: series and Parallel Damped Vibrations (Over View), Active Vibration Absorbers, Fiber Optics, Physical Phenomenca, Ch	SMART MATERIALS AND STRUCTURES					
Teaching Hours/Week (L:P:SDA) 3/0:2 EEE Marks 60 Credits 04 Exam Hours 03 Smart Structures: Types of Smart Structures, Potential Feasibility of Smart Structures, Key Elements Of Smart Structures, Applications of Smart Structures, Piezoelectric materials, Popertics, piezoelectric Constitutive Relations, Depoling and Corrive Field, field strain relation. Hysteresis, Creep and Strain Rate effects, Inchworm Linear Motor, Beam Modelling with induced strain Rate effects, Inchworm Linear Motor Beam Modelling with induced strain actuation-single Actuators, dual Actuators, Pure Estension, Pure Bending harmonic excitation, Bernoulli-Euler beam Model, problems, Piezoelectrical Applications. Module-1 Shape memory Alloy: Experimental Phenomenology, Shape Memory Effect, Phase Transformation, Tanaka's Constitutive Model, testing of SMA Wires, Vibration Control through SMA, Multiplexing, Applications Of SMA and Problems. Re and MR Fluids: Mechanisms and properties, Fluid Composition and behavior, The Bingham Plastic and Related Models, Pre-Vield Response. Post-Vield flow applications. In Clatches, Dampers and Others. Module-3 Wordures: Module-1 Notlue-3 Vibration Absorbers: series and Parallel Damped Vibrations (Over View), Active Vibration Absorbers, Fiber Optics, Physical Phenomena, Characteristics, Sensors, Fiber Optics in Crack Detection, applications. Control of Structures: Modelling, Control Strategies and Limitations, Active Structures in Practice. 10Hours Module-5 Module-5 Evenamedia Actuators, Conductivity of Semiconductors, Crystal Planes and Orientation, (Stress an	Course Code	20MST21	CIE Marks	40		
Credits 04 Exam Hours 03 Smart Structures: Types of Smart Structures, Potential Feasibility of Smart Structures, Key Elements Of Smart Structures, Applications of Smart Structures, Piezoelectric materials, Properties, Piezoelectric Constitutive Relations, Depoling and Corevive Field, field Strain relation. Hysteresis, Creep and Strain Rate effects, Inchworn Linear Modelling with induced strain Actuation-single Actuators, Aud Actuators, Pure Extension, Pure Bending harmonic excitation, Bernoulli-Euler beam Model, problems, Piezoelectrical Applications. Motor Beam Modelling with induced strain Actuation-single Actuators, Aud Actuators, Pure Extension, Pure Bending harmonic excitation, Bernoulli-Euler beam Model, problems, Piezoelectrical Applications. Shape memory Alloy: Experimental Phenomenology, Shape Memory Effect, Phase Transformation, Tanaka's Constitutive Model, testing of SMA Wires, Vibration Control through SMA, Multiplexing, Applications Of SMA and Problems. ER and MR Fluids: Mechanisms and properties, Fluid Composition and behavior. The Bingham Plastic and Related Models, Pre-Yield Response. Post-Yield flow applications. Control of Structures: Modelling, Control Strategies and Limitations, Active Structures in Practice. Vibration Absorbers: series and Parallel Damped Vibrations (Over View), Active Vibration Absorbers, Fiber Optics, Physical Phenomena, Characteristics, Sensors, Fiber Optics in Crack Detection, applications. Control of Structures: Modelling, Control Strategies and Limitations, Active Structures in Practice. MEMS – Mechanical Properties of MEMS, Materials, Scaling of Mechanical Systems, Fundamentals of Theory, The Intrinsic Characteristics of MEMS, Minitarizziton, Microelectronics Integration. Couses the	Teaching Hours/Week (L:P:SDA)	3:0:2	SEE Marks	60		
Module-1 Smart Structures: Types of Smart Structures. Plezoelectric materials, Properties, piezoelectric Constitutive Relations, Depoling and Coervice Field, field strain relation. Hysteresis, Creep and Strain Rate effects, Inchworm Linear Motor. Beam Modelling with induced strain Rate effects, Inchworm Linear Motor Beam Modelling with induced strain Actuation-single Actuators, dual Actuators, Pure Extension, Pure Bending harmonic excitation, Bernoulli-Euler beam Model, problems, Piezoelectrical Applications. Module-2 Shape memory Alloy: Experimental Phenomenology, Shape Memory Effect, Phase Transformation, Tanaka's Constitutive Model, testing of SMA Wires, Vibration Control through SMA, Multiplexing, Applications of SMA and Problems, FR and MR Fluids. Mechanisms and properties, Fluid Composition and behavior, The Bingham Plastic and Related Models, Pre-Yield Response. Post-Yield flow applications in Clatches, Dampers and Others. Wibration Absorbers: series and Parallel Damped Vibrations (Over View), Active Vibration Absorbers, Fiber Optics, Physical Phenomena, Characteristics, Sensors, Fiber Optics in Crack Detection, applications. Control of Structures: Modelling, Control Strategies and Limitations, Active Structures in Practice. 10Hours MEMS – Mechanical Properties of MEMS, Mainaturization, Microelectronics Integration. Module-4 Module-5 Nodule-4 Medule-5 IPP optics in Crask Detection, applications, Cornorol of Structures: Modelling, Control Strategies and Limitations, Active Structures in Practice. 10Hours Module-5 Nodule-4 Module-5 Devices: Sensors and Actuators, Cond	Credits	04	Exam Hours	03		
Smart Structures: Types of Smart Structures, Piezoelectric materials, Properties, piezoelectric Constitutive Relations, Depoling and Coercive Field, field strain relation. Hysteresis, Creep and Strain Rate effects, Inchworm Linear Modelling with induced strain Rate effects, Inchworm Linear Motor Beam Modelling with induced strain Rate affects, Super Modelling with induced strain Rate affects, dual Actuators, Pure Extension, Pure Bending harmonic excitation, Bernoulli-Euler beam Model, problems, Piezoelectrical Applications. Module-2 Shape memory Alloy: Experimental Phenomenology, Shape Memory Effect, Phase Transformation, Tanaka's Constitutive Model, testing of SMA Wires, Vibration Control through SMA, Multiplexing, Applications Of SMA and Problems. ER and MR Fluids: Mechanisms and properties, Fluid Composition and behavior, The Bingham Plastics and Related Models, Pre-Yield Response. Post-Yield How applications in Clatches, Dampers and Others. Module-3 Vibration Absorbers: series and Parallel Damped Vibrations (Over View), Active Vibration Absorbers, Fiber Optics, Physical Phenomena, Characteristics, Sensors, Fiber Optics in Crack Detection, applications. Control of Structures: Modelling. Control Strategies and Limitations, Active Structures in Practice. 10Hours Module-4 MEMS – Mechanical Properties of MEMS Materials. Scaling of Mechanical Systems, Fundamentals of Theory, The Intrinsic Characteristics of MEMS, Miniaturization, Microelectronics Integration. Course outcomes: At the end of the course the student will be able to: 1) Understand the behaviour and applicability of various smart materials 2) Design simple models for smart structures & materials 3) Perform simulations of subart structures & materials 3) Perform simulations of subart structures & materials 3) Perform simulations of subar	Mod	lule-1				
Relations, Depoing and Coercive Field, field strain feation. Physicesis, Creep and Strain Relate effects, Inchworn Linear Motor. Beam Modelling: Beam Modelling with induced strain Rate effects, Inchworn Linear Motor Beam Modelling with induced strain Actuators, dual Actuators, Pure Extension, Pure Bending harmonic excitation, Bernoulli-Euler beam Model, problems, Piezoelectrical Applications. Module-2 Shape memory Alloy: Experimental Phenomenology, Shape Memory Effect, Phase Transformation, Tanaka's Constitutive Model, testing of SMA Wires, Vibration Control Inrough SMA, Multiplexing, Applications Of SMA and Problems. ER and MR Fluids: Mechanisms and properties, Fluid Composition and behavior, The Bingham Plastic and Related Models, Pre-Yield Response. Post-Yield flow applications in Clatches, Dampers and Others. Module-3 Vibration Absorbers: series and Parallel Damped Vibrations (Over View), Active Vibration Absorbers, Fiber Optics, Physical Phenomena, Characteristics, Sensors, Fiber Optics in Crack Detection, applications. Control of Structures: Modelling, Control Strategies and Limitations, Active Structures in Practice. 10Hours Module-4 MEMS – Mechanical Properties of MEMS Materials, Scaling of Mechanical Systems, Fundamentals of Theory, The Intrinsic Characteristics of MEMS Miniaturization, Microelectronics Integration. Module-5 Devices: Sensors and Actuators, Conductivity of Semiconductors, Crystal Planes and Orientation, (Stress and Strain Relations, Flexural Beam Bending Analysis Under Simple Loading Conditions), Polymers in MEMS, Optical MEMS Applications. Course outcomes: At the end of the course the student will be able to: 1) Understand the behaviour and applicability of various smart materials 2) Design simple models for smart structures & materials application 4) Conduct experiments to verify the predictions 5) knowledge of sensors, actuators. Each full question is for 20 marks. Each full question is for 20 marks. Each full question is for 20 marks. There will bave t	Smart Structures: Types of Smart Structures, Potential F Structures, Applications of Smart Structures. Piezoelect	Feasibility of Smart Str ric materials, Propertie	ructures, Key Elements O es, piezoelectric Constitut	f Smart tive		
Bending harmonic excitation, Bernoulli-Euler beam Model, problems, Piezoelectrical Applications. Module-2 Shape memory Alloy: Experimental Phenomenology, Shape Memory Effect, Phase Transformation, Tanaka's Constitutive Model, testing of SMA Wires, Vibration Control through SMA, Multiplexing. Applications Of SMA and Problems. ER and MR Fluids: Mechanisms and properties, Fluid Composition and behavior, The Bingham Plastic and Related Models, Pre-Yield Response. Post-Yield flow applications in Clatches, Dampers and Others. Module-3 Vibration Absorbers: series and Parallel Damped Vibrations (Over View), Active Vibration Absorbers, Fiber Optics, Physical Phenomena, Characteristics, Sensors, Fiber Optics in Crack Detection, applications. Control of Structures: Modelling, Control Strategies and Limitations, Active Structures in Practice. 10Hours Module-4 MEMS – Mechanical Properties of MEMS Materials, Scaling of Mechanical Systems, Fundamentals of Theory, The Intrinsic Characteristics of MEMS Materials, Scaling of Mechanical Systems, Fundamentals of Theory, The Intrinsic Characteristics of MEMS Materials, Scaling of Mechanical Systems, Fundamentals of Theory, The Intrinsic Characteristics of of MeMS Junder Simple Loading Conditions), Polymers in MEMS, Optical MEMS Applications. Outces: Sensors and Actuators, Conductivity of Semiconductors, Crystal Planes and Orientation, (Stress and Strain Relations, Flexural Beam Bending Analysis Under Simple Loading Conditions), Polymers in MEMS, Optical MEMS Applications. Outcet seperiments to verify the predictions 5) 1) Understand the behaviour and applicability of various smart materials	Inchworm Linear Motor. Beam Modelling: Beam Model Motor Beam Modelling with induced strain Actuation-s	lling with induced stra	in Rate effects, Inchworr Actuators, Pure Extension	n Linear 1. Pure		
Module-2 Shape memory Alloy: Experimental Phenomenology, Shape Memory Effect, Phase Transformation, Tanaka's Constitutive Model, testing of SMA Wires, Vibration Control through SMA, Multiplexing, Applications of SMA and Problems. ER and MR Fluids: Mechanisms and properties, Fluid Composition and behavior, The Bingham Plastic and Related Models, Pre-Yield Response. Post-Yield flow applications in Clatches, Dampers and Others. Module-3 Vibration Absorbers: series and Parallel Damped Vibrations (Over View), Active Vibration Absorbers, Fiber Optics, Physical Phenomena, Characteristics, Sensors, Fiber Optics in Crack Detection, applications. Control of Structures: Modelling, Control Strategies and Limitations, Active Structures in Practice. IModule-4 MEMS – Mechanical Properties of MEMS Materials, Scaling of Mechanical Systems, Fundamentals of Theory, The Intrinsic Characteristics of MEMS, Miniaturization, Microelectronics Integration. Imtrinsic Characteristics of MEMS Materials, Scaling of Mechanical Systems, Fundamentals of Theory, The Intrinsic Characteristics of MEMS, Miniaturization, Microelectronics Integration. Overses: Sensors and Actuators, Conductivity of Semiconductors, Crystal Planes and Orientation, (Stress and Strain Relations, Flexural Beam Bending Analysis Under Simple Loading Conditions), Polymers in MEMS, Optical MEMS Applications. Outgrass of smart structures & materials 2) Design simple models for smart structures & materials 2) Design simple models for smart structures & materials application 4) Conduct experiments to verify the predictions 5) knowledge of sensors, actuators.	Bending harmonic excitation, Bernoulli-Euler beam Mo	del, problems, Piezoel	lectrical Applications.	-,		
Module-3 Vibration Absorbers: series and Parallel Damped Vibrations (Over View), Active Vibration Absorbers, Fiber Optics, Physical Phenomena, Characteristics, Sensors, Fiber Optics in Crack Detection, applications. Control of Structures: Modelling, Control Strategies and Limitations, Active Structures in Practice. Module-4 MEMS – Mechanical Properties of MEMS, Miniaturization, Microelectronics Integration. Module-5 Devices: Sensors and Actuators, Conductivity of Semiconductors, Crystal Planes and Orientation, (Stress and Strain Relations, Flexural Beam Bending Analysis Under Simple Loading Conditions), Polymers in MEMS, Optical MEMS Applications. Course outcomes: At the end of the course the student will be able to: 1) Understand the behaviour and applicability of various smart materials 2) Design simple models for smart structures & materials Devices: Sensors, actuators. Question paper pattern: The advision and applicability of various smart materials Optical MEMS for smart structures & materials application 4) Design simple models for smart structures & materials Devices: Sensors actuators. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The guestion is for 20 m	Shape memory Alloy: Experimental Phenomenology, S Constitutive Model, testing of SMA Wires, Vibration C SMA and Problems. ER and MR Fluids: Mechanisms an Bingham Plastic and Related Models, Pre-Yield Respon and Others.	hape Memory Effect, 1 ontrol through SMA, 1 nd properties, Fluid Co ise. Post-Yield flow ap	Phase Transformation, Ta Multiplexing. Application omposition and behavior, oplications in Clatches, D	nnaka's Is Of The ampers		
Vibration Absorbers: series and Parallel Damped Vibrations (Over View), Active Vibration Absorbers, Fiber Optics, Physical Phenomena, Characteristics, Sensors, Fiber Optics in Crack Detection, applications. Control of Structures: Modelling, Control Strategies and Limitations, Active Structures in Practice. 10Hours Module-4 MEMS – Mechanical Properties of MEMS Materials, Scaling of Mechanical Systems, Fundamentals of Theory, The Intrinsic Characteristics of MEMS, Miniaturization, Microelectronics Integration. Module-5 Devices: Sensors and Actuators, Conductivity of Semiconductors, Crystal Planes and Orientation, (Stress and Strain Relations, Flexural Beam Bending Analysis Under Simple Loading Conditions), Polymers in MEMS, Optical MEMS Applications. Course outcomes: At the end of the course the student will be able to: 1) Understand the behaviour and applicability of various smart materials 2) Design simple models for smart structures & materials 3) Perform simulations of smart structures & materials 4) Conduct experiments to verify the predictions 5) knowledge of sensors, actuators. Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. • The question paper will have ten full questions carrying equal marks. • Each full question is for 20 marks. • There will be two full questions (with a maximum of four sub questions) from each module. • Each full question will have sub question covering all the topics under a module. • The students will have to answer five full questions, selecting one full question from each module. • The students will have to answer five full questions, selecting one full question from each module. • The students will have to answer five full questions, selecting one full question from each module. • The students will have to answer five full questions, selecting one full question from each module. • The students and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412	Mod	lule-3				
Module-4 MEMS – Mechanical Properties of MEMS Materials, Scaling of Mechanical Systems, Fundamentals of Theory, The Intrinsic Characteristics of MEMS, Miniaturization, Microelectronics Integration. Module-5 Devices: Sensors and Actuators, Conductivity of Semiconductors, Crystal Planes and Orientation, (Stress and Strain Relations, Flexural Beam Bending Analysis Under Simple Loading Conditions), Polymers in MEMS, Optical MEMS Applications. Course outcomes: At the end of the course the student will be able to: 1) Understand the behaviour and applicability of various smart materials 2) Design simple models for smart structures & materials 3) Perform simulations of smart structures & materials application 4) Conduct experiments to verify the predictions 5) knowledge of sensors, actuators. Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. • The question paper will have ten full questions carrying equal marks. • Each full question is for 20 marks. • Each full question will have sub question covering all the topics under a module. • Each full question will have to answer five full questions, selecting one full question from each module. • The students will have to answer five full questions, selecting one full question from each module. • The students will have to answer five full questions, selecting one full question from each module. • Each full question will have sub question covering all the topics under a module. • The students will	Vibration Absorbers: series and Parallel Damped Vibration Optics, Physical Phenomena, Characteristics, Sensors, F Structures: Modelling, Control Strategies and Limitation	ions (Over View), Act iber Optics in Crack I ns, Active Structures in	tive Vibration Absorbers, Detection, applications. C n Practice. 10H	, Fiber ontrol of lours		
 MEMS – Mechanical Properties of MEMS Materials, Scaling of Mechanical Systems, Fundamentals of Theory, The Intrinsic Characteristics of MEMS, Miniaturization, Microelectronics Integration. Module-5 Devices: Sensors and Actuators, Conductivity of Semiconductors, Crystal Planes and Orientation, (Stress and Strain Relations, Flexural Beam Bending Analysis Under Simple Loading Conditions), Polymers in MEMS, Optical MEMS Applications. Course outcomes: At the end of the course the student will be able to: Understand the behaviour and applicability of various smart materials Design simple models for smart structures & materials Perform simulations of smart structures & materials application Conduct experiments to verify the predictions knowledge of sensors, actuators. Question paper pattern: The StEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The question paper will have ten full questions carrying equal marks. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have to answer five full questions, selecting one full question from each module. The students will have to answer five full questions, selecting one full question from each module. Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267). 	Mod	lule-4				
Module-5 Devices: Sensors and Actuators, Conductivity of Semiconductors, Crystal Planes and Orientation, (Stress and Strain Relations, Flexural Beam Bending Analysis Under Simple Loading Conditions), Polymers in MEMS, Optical MEMS Applications. Course outcomes: At the end of the course the student will be able to: 1) Understand the behaviour and applicability of various smart materials 2) Design simple models for smart structures & materials 3) Perform simulations of smart structures & materials application 4) Conduct experiments to verify the predictions 5) knowledge of sensors, actuators. Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. • The question paper will have ten full questions carrying equal marks. • Each full question is for 20 marks. • There will be two full questions (with a maximum of four sub questions) from each module. • Each full question will have sub question covering all the topics under a module. • The students will have to answer five full questions, selecting one full question from each module. • The students will have to answer five full questions, selecting one full question from each module. • The students will have to answer five full questions, selecting one full question from each module. • The students will have to answer five full questions, selecting one full ques	MEMS – Mechanical Properties of MEMS Materials, Se The Intrinsic Characteristics of MEMS, Miniaturization	caling of Mechanical S , Microelectronics Inte	Systems, Fundamentals of egration.	f Theory,		
 Devices: Sensors and Actuators, Conductivity of Semiconductors, Crystal Planes and Orientation, (Stress and Strain Relations, Flexural Beam Bending Analysis Under Simple Loading Conditions), Polymers in MEMS, Optical MEMS Applications. Course outcomes: At the end of the course the student will be able to: 1) Understand the behaviour and applicability of various smart materials 2) Design simple models for smart structures & materials 3) Perform simulations of smart structures & materials application 4) Conduct experiments to verify the predictions 5) knowledge of sensors, actuators. Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The question paper will have ten full questions carrying equal marks. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have to answer five full questions, selecting one full question from each module. The students will have to answer five full questions, selecting one full question from each module. Textbook/ Textbooks Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267). 	Mod	lule-5				
 Course outcomes: At the end of the course the student will be able to: 1) Understand the behaviour and applicability of various smart materials 2) Design simple models for smart structures & materials 3) Perform simulations of smart structures & materials application 4) Conduct experiments to verify the predictions 5) knowledge of sensors, actuators. Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The question paper will have ten full questions carrying equal marks. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. Textbook/ Textbooks Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). Smart Structures and Materials - B. Culshaw, Artech House, Boston, 1996 (ISBN :0890066817). Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267). 	Devices: Sensors and Actuators, Conductivity of Semico Strain Relations, Flexural Beam Bending Analysis Unde Optical MEMS Applications.	onductors, Crystal Pla er Simple Loading Co	nes and Orientation, (Stre nditions), Polymers in MI	ess and EMS,		
 At the end of the course the student will be able to: Understand the behaviour and applicability of various smart materials perform simulations of smart structures & materials application Conduct experiments to verify the predictions knowledge of sensors, actuators. Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The question paper will have ten full questions carrying equal marks. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. Textbook/ Textbooks Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). Smart Structures and Materials - B. Culshaw, Artech House, Boston, 1996 (ISBN :0890066817). Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267). 						
 1) Understand the behaviour and applicability of various smart materials 2) Design simple models for smart structures & materials 3) Perform simulations of smart structures & materials application 4) Conduct experiments to verify the predictions 5) knowledge of sensors, actuators. Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The question paper will have ten full questions carrying equal marks. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. Textbook/ Textbooks 1. Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). 2. Smart Structures and Materials - B. Culshaw, Artech House, Boston, 1996 (ISBN :0890066817). 3. Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267).	At the end of the course the student will be able to:					
 2) Design simple models for smart structures & materials 3) Perform simulations of smart structures & materials application 4) Conduct experiments to verify the predictions 5) knowledge of sensors, actuators. Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The question paper will have ten full questions carrying equal marks. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. Textbook/ Textbooks 1. Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). 2. Smart Structures and Materials - B. Culshaw, Artech House, Boston, 1996 (ISBN :0890066817). 3. Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267).	1) Understand the behaviour and applicability of various	s smart materials				
 3) Perform simulations of smart structures & materials application 4) Conduct experiments to verify the predictions 5) knowledge of sensors, actuators. Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The question paper will have ten full questions carrying equal marks. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. Textbook/ Textbooks 1. Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). 2. Smart Structures and Materials - B. Culshaw, Artech House, Boston, 1996 (ISBN :0890066817). 3. Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267).	2) Design simple models for smart structures & material	s				
 4) Conduct experiments to verify the predictions 5) knowledge of sensors, actuators. Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The question paper will have ten full questions carrying equal marks. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. Textbook/ Textbooks Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). Smart Structures and Materials - B. Culshaw, Artech House, Boston, 1996 (ISBN :0890066817). Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267). 	3) Perform simulations of smart structures & materials a	application				
 5) knowledge of sensors, actuators. Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The question paper will have ten full questions carrying equal marks. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. Textbook/ Textbooks Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). Smart Structures and Materials - B. Culshaw, Artech House, Boston, 1996 (ISBN :0890066817). Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267). 	4) Conduct experiments to verify the predictions					
 Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The question paper will have ten full questions carrying equal marks. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. Textbook/ Textbooks Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). Smart Structures and Materials - B. Culshaw, Artech House, Boston, 1996 (ISBN :0890066817). Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267). 	5) knowledge of sensors, actuators.					
 Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The question paper will have ten full questions carrying equal marks. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. Textbook/ Textbooks Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). Smart Structures and Materials - B. Culshaw, Artech House, Boston, 1996 (ISBN :0890066817). Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267). 						
 Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. Textbook/ Textbooks Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). Smart Structures and Materials - B. Culshaw, Artech House, Boston, 1996 (ISBN :0890066817). Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267). 	Question paper pattern: The SEE question paper will be set for 100 marks and th • The question paper will have ten full questions • Each full question is for 20 modes	ne marks scored will b carrying equal marks.	e proportionately reduced	l to 60.		
 Finite will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. Textbook/ Textbooks Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). Smart Structures and Materials - B. Culshaw, Artech House, Boston, 1996 (ISBN :0890066817). Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267). 	 Each full question is for 20 marks. There will be two full questions (with a maximum) 	• Each rull question is for 20 marks.				
 Each full question with have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. ■ Textbook/ Textbooks Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). Smart Structures and Materials - B. Culshaw, Artech House, Boston, 1996 (ISBN :0890066817). Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267). 	Free full question will have sub-question a maxim	ing all the topics under	ar a modula			
 The students will have to answer five full questions, selecting one full question from each module. ■ Textbook/ Textbooks 1. Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). Smart Structures and Materials - B. Culshaw, Artech House, Boston, 1996 (ISBN :0890066817). Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267). 	 Each run question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each medule. 					
 Textbook/ Textbooks 1. Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107). 2. Smart Structures and Materials - B. Culshaw, Artech House, Boston, 1996 (ISBN :0890066817). 3. Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267). 	• The students will have to answer rive run questions, selecting one run question from each module.					
	Textbook/ Textbooks 1. Smart Materials and Structures - M. V. Gandhi and B 1992 (ISBN: 0412370107). 2. Smart Structures and Materials - B. Culshaw, Artech 3. Smart Structures: Analysis and Design - A. V. Sriniva York, 2001 (ISBN: 0521650267).	. So Thompson, Chap House, Boston, 1996 asan, Cambridge Univ	man and Hall, London; N (ISBN :0890066817). ersity Press, Cambridge;	few York, New		

Reference Books

1. Electro ceramics: Materials, Properties and Applications - A. J. Moulson and J. M. Herbert. John Wiley & Sons, ISBN: 0471497429

2. Piezoelectric Sensories: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors. Materials and Amplifiers, Springer, Berlin; New York, 2002 (ISBN: 3540422595).

3. Piezoelectric Actuators and Wtrasonic Motors - K. Uchino, Kluwer Academic Publishers, Boston, 1997 (ISBN: 0792398114).

4. Handbook of Giant Magneto strictive Materials - G. Engdahl, Academic Press, San Diego, Calif.; London, 2000 (ISBN: 012238640X).

5. Shape Memory Materials - K. Otsuka and C. M. Wayman, Cambridge University Press, Cambridge; New York, 199~ (ISBN: 052144487X).

TESTIN	G OF MATERIALS		
Course Code	20MST22	CIE Marks	40
Teaching Hours/Week (L:P:SDA)	3:0:2	SEE Marks	60
Credits	04	Exam Hours	03
	Module-1		
Testing machines and sensors: types of Universal 7 stiffness, load and strain measurement. Calibration Testing of sliding contact, damage, abrasive wear, surface characteristics of solid materials. (Surface	Testing machines and pr and verification of UTI adhesive wear, erosive roughness measurement	inciples of operations, Mach M. Friction, wear and surface wear. Testing and determina ts) 10Hours	nine e testing: tion of
	Module-2	10110015	
Importance of calibration of Testing Instruments: On methods with active reference to various codes Approaches of Failure analysis, objectives, scope, examination of damages and materials evaluation. fracture in common conditions like unit axial loads	Calibration methods and and standard for each te planning ,preparation. F Tools and Techniques is s, tensional and shear los	l standards. Tests/ experimer est.Failure Analysis: Principl Failure Analysis procedures. n FA – An overview. Appea ads, fatigue and creep loadir	nts based les and rances of ng.
Microscopy: Optical microscopa, scapping electro	n microscopo Proporati	on of Specimens for microse	onio
study. Speed & Control of Testing Background De rates on properties Results before servo control, Re	evelopments in testing N esults from servo contro	Iachine Technology, Effects lied machines.	of testing
	Module-4		
Strain Rate Testing Aim of Recommendations, Ab Specimens Measurements, Data Processing, Gener Model Material Strain Rate Dependency	breviations and Symbol ral Definitions Strength	s, Test Machine Requiremer Hardening Constitutive Rela	nt, ations to
	Module-5		
Lubrication & Determination of characteristics of lubricants Methods of lubrication, four ball testing	lubricants: Introduction,	Types of lubricants, charact	teristics of
Course outcomes: At the end of the course the student will be able to • Students will be able to understand and co • Understanding of various testing methods • Use various types of microscopic studies. • Knowledge of data processing and correla • Apply lubricating techniques and testing to	: orrelate various testing r s for practical application ating them them.	nethods used in industries. ns.	
 Question paper pattern: The SEE question paper will be set for 100 marks The question paper will have ten full quest Each full question is for 20 marks. There will be two full questions (with a mean full question will have sub question The students will have to answer five full 	and the marks scored wi stions carrying equal ma naximum of four sub que covering all the topics u questions, selecting one	ill be proportionately reduce rks. estions) from each module. inder a module. e full question from each mo	d to 60. dule.∎
Textbook/ Textbooks 1. Testing of Metallic Materials – A.V.K. Suryana	rayana, Prentice Hall of	India. 2007	
 Reference Books 1. ASM Vol Testing of materials 2. Inspection of Materials, Vol. II – Destructive M 3. Workability Testing Techniques, G.E. Dieter, A 4. Relevant codes and standards. 	ethods, R.C. Andersen, SM 1984.	ASM 1988.	

ADVANCED FOUNDRY TECHNOLOGY						
Course Code	20MST23	CIE Marks	40			
Teaching Hours/Week (L:P:SDA)	3:0:2	SEE Marks	60			
Credits	04	Exam Hours	03			
Mod	ule-1					
Solidification of Casting: Concept of solidification of me	etals. Homogenous an	d heterogeneous nucleati	on.			
Growth mechanism. Solidification of pure metals and all	loys. Mechanism of co	olumnar and dendritic gro	wth.			
Coring or Segregation. Solidification time and Chvorino	v's rule. Concept of pr	ogressive and directional	l			
solidifications. Principles of Gating and Risering: Purpo	se of the gating systen	n. Components of the gat	ing			
System and its functions. Design of the gating System. I	Different types of gates	s. Gating ratio and its fun	ctions.			
Definition and functions of the riser. Types of risers and	their application. Des	ign of the riser - its shape	e. Size			
and location. Use of insulating material and exothermic	compounds in risers.					
Mod	ule-2	·	•			
Design of Casting and Quality Control: Factors to be con	isidered in casting des	ign. Design consideration	n 1n			
pattern making, moulding techniques and core making a	nd assembly. Cooling	stresses and hot spots in	casting			
and modification in casting geometry to overcome them.	Casting defects and f	actors responsible for the	em.			
Different inspection and testing methods to evaluate the	casting. Quality control	of activities in a foundry.	*7			
solvaging methods of defective casting. Furnace Technic	as Posistanco Arc an	d Induction furnaçãos thai	y, r			
construction Operation and application Heat treatment	furnaces and drying or	vens used in foundry	1			
Mod	nle-3	vens used in foundry.				
Special casting processes: Investment casting Die casting	o centrifuoal casting	full mould casting vacu	um			
shield casting etc.	ig, continugai casting,	run mould custing, vacu	um			
Industrial melting practices: Aim of melting and melting	practices as adopted	in case of Cast Irons. Stee	el. Cu. Al			
and its allovs.	· · · · · · · · · · · · · · · · · · ·		,,			
Mod	nlo <i>4</i>					
Aluminium Foundry Practice: Conner Alloy Foundry Pr	uic-4 ractice: General chara	cteristics of common cast	conner			
allovs Melting and casting of copper allovs Gating and	risering of cu-allov ca	etings	copper			
anoys. werting and casting of copper anoys. Suring and	-la 5	istiligs.				
Wiou Foundary Machanization and Madamization: Introduction	ule-5 a to modernization M	achanization of foundary	and its			
advantages. Mechanization of sand plant, moulding and	core making mechaniz	zation in melting pouring	and and			
shakeout units. Material handling equipment's and conv	evor systems Brief sk	etches and description of	lavouts			
of job Captive and mechanized foundries	eyőr systemis. Diter sk	ciencs and description of	layouts			
Course outcomes.						
At the end of the course the student will be able to:						
1. To promote understanding of basic facts and concepts	in foundry process w	hile retaining the excitem	ent of			
foundry industry (PO-1)	in roundry process w	line retaining the exciten				
2. Understand and apply the studies of different process	es used in Foundry Ind	lustries and their applicat	ions.			
(PO-1, 2)		astres and men appread				
3. Acquire the skill and knowledge of terms, facts, conce	epts, processes, techni	ques and principles of for	undry			
industries. (PO-2,3)						
4. Apply the skill and knowledge of contents of principle	es of furnace technolog	gy. (PO-1,2)				
5. Inquire of new skill and knowledge of foundry practis	es and developments	therein. (PO-2,5)				
6. Expose and to develop interest in the fields of design	of casting. (PO-3,4,7)					
Question paper pattern:						
The SEE question paper will be set for 100 marks and th	e marks scored will be	e proportionately reduced	l to 60.			
• The question paper will have ten full questions	carrying equal marks.	- •				
• Each full question is for 20 marks.	• Each full question is for 20 marks.					
• There will be two full questions (with a maximu	um of four sub questio	ns) from each module.				
• Each full question will have sub question cover	ing all the topics unde	r a module.				
• The students will have to answer five full quest	ions, selecting one ful	l question from each mod	lule. ∎			
	-					

Textbook/ Textbooks

1. A Test Book of Foundry Technology - Lal, M. Khanna, P.O – Dhanpat Rai & Sons Publication. 2011 2. Advanced Foundry Technology – Pranav Pandey Pdf - 2017

- 1. Principle of Metal Casting Heine, et. al Tata-McGraw-HiII Publication 2003.
- 2. Foundry Technology Beelely, P.R. Butterworth & Co.
- 3. Fundamentals of Foundry Technology, Webster, P.D.,
- 4. Fundamentals of Metal casting Technology, Mukherjee, P.C

20MST241 4:0:0 04 ule-1 metal coating, thin or metal spraying - M dule-2 coating. Plastic coating. Plastic coating. anism of formation dule-3 treatment method sub-zero treatment. dule-4 s. dule-5	CIE Marks SEE Marks Exam Hours coating, thin coating, chromium Methods, surface preparation, Methods, surface preparation, s, Annealing, Normalizing,	40 60 03
4:0:0 04 dule-1 metal coating, thin of metal spraying - M dule-2 coating. Plastic co anism of formation dule-3 treatment method sub-zero treatment. dule-4 s. dule-5	SEE Marks Exam Hours coating, thin coating, chromium Methods, surface preparation, pating of metal - PVC coating h. s, Annealing, Normalizing,	
04 Jule-1 metal coating, thin of metal spraying - N Jule-2 coating. Plastic co anism of formation Jule-3 treatment method sub-zero treatment. Jule-4 s. Jule-5	Exam Hours coating, thin coating, chromium Methods, surface preparation, pating of metal - PVC coating h. s, Annealing, Normalizing,	
dule-1 netal coating, thin of metal spraying - N dule-2 coating. Plastic coating. Plastic coating of formation dule-3 ctreatment method sub-zero treatment. dule-4 s. dule-5	coating, thin coating, chromium Methods, surface preparation, nating of metal - PVC coating n. s, Annealing, Normalizing,	l
netal coating, thin metal spraying - M dule-2 coating. Plastic co anism of formation dule-3 treatment method sub-zero treatment. dule-4 s. dule-5	coating, thin coating, chromium Methods, surface preparation, pating of metal - PVC coating h. s, Annealing, Normalizing,	I
tule-2 coating. Plastic co anism of formation tule-3 treatment method sub-zero treatment. tule-4 s. tule-5	pating of metal - PVC coating h. s, Annealing, Normalizing,	
coating. Plastic co anism of formation dule-3 treatment method sub-zero treatment. dule-4 s. dule-5	eating of metal - PVC coating n. s, Annealing, Normalizing,	
tule-3 treatment method sub-zero treatment. tule-4 s. tule-5	s, Annealing, Normalizing,	
treatment method sub-zero treatment. dule-4 s. dule-5	s, Annealing, Normalizing,	
1ule-4 s. 1ule-5		
s. Jule-5		
dule-5		
position technique	, nanocoating's, coating	
te treatment, electro hods used in indus coating industry. he marks scored w carrying equal ma num of four sub qua ring all the topics u tions, selecting one	oplating, surface coating and he try ill be proportionately reduced to trks. estions) from each module. under a module. e full question from each modul	at ⊃ 60. e. ∎
umes A Murphy - M chnology, Vol. 18, 10, , The institute	AcGraw Hill. , ASM . of metallurgist series.	
· Pergamon Press C y & sons. ns.	Gabe, David Russell - Descriptio	on,
	e treatment, electro nods used in indus coating industry. ne marks scored w carrying equal ma um of four sub que ing all the topics u cions, selecting one mes A Murphy - N chnology, Vol. 18, 10, , The institute Pergamon Press C 7 & sons. ns.	e treatment, electroplating, surface coating and he nods used in industry coating industry. ne marks scored will be proportionately reduced to carrying equal marks. um of four sub questions) from each module. ting all the topics under a module. tions, selecting one full question from each modul mes A Murphy - McGraw Hill. chnology, Vol. 18, ASM . 10, , The institute of metallurgist series. Pergamon Press Gabe, David Russell - Description / & sons. ns.

AGILE MANUFACTURING				
Course Code	20MST242	CIE Marks	40	
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	60	
Credits	04	Exam Hours	03	

Module-1

Agile Manufacturing: Definition, business need, conceptual frame work, characteristics, generic features. Four Core concepts: Strategy driven approach integrating organization, people technology, interdisciplinary design methodology.

Module-2

Developing Agile Manufacturing: Enterprise design, System concepts as the basic manufacturing theory-joint technical & Organizational design and a model for the design of agile manufacturing enterprise. Enterprise design process insights into design processes, what is interdisciplinary design, main issues, simple design example. Integration of Product /Process Development: Principles, Robust design approach, Approaches to enhance ability in manufacturing, Role of QFD, Managing people in Agile organization, Approaches.

Module-3

Application of IT/IS Concepts In Agile Manufacturing: Strategies, Management of complexities and information. flow, approaches, applications of multimedia to improve agility in manufacturing, system concepts. Agile Supply Chain Management: Principles, IT/IS concepts in supply chain management, enterprise integration and management in agile manufacturing, concepts, Agility, Adaptability and learners – comparison of concept

Module-4

Computer Control Of Agile Manufacturing: CAPP for Agile Manufacturing, Aggregate capacity planning and production line design / redesign in Agile manufacturing, Cellular manufacturing, concepts, examples. Corporate Knowledge Management In Agile Manufacturing: Strategies, strategic options in Agile manufacturing, Role of standards.

Module-5

Design of Skill & Knowledge: Enhancing technology for Machine tool system, Resumption of design requirement geometry, definition, methods, decision support for selection of cutting parameters, design enhancements, parametric approach only.

Course outcomes:

At the end of the course the student will be able to:

- 1. Understand conceptual frame work of agile manufacturing environment.
- 2. Get insight into Enterprise design process, apply interdisciplinary design concepts.
- 3. Develop characteristic difference between lean manufacturing and agile manufacturing and appreciate
- benefits that can be derived by adopting newer manufacturing strategies.
- 4. Develop skill & Knowledge for machining tool system.

5. learn concepts of SCM.

Question paper pattern:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.

- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbook/ Textbooks

- 1. 'Agile Manufacturing Forging Mew Frontiers', Poul T Kidd, Amagow Co. UK, ISBN-0-201-63163-6, 1994.
- 2. "Agile Manufacturing", A Gunasekaran, the 21 Century Competitive strategy, ISBN -13 978-0-08-04 3567-1, Elsevier Press, India. 2001.

Reference Books

 O Levine Transitions to Agile Manufacturing, Joseph C Moutigomery and Lawrence – Staying Flexibl e for competitive advant age, ASQC quality press, Milwaukee. Wisconsin, USA, 1996.
 Agile Development for Mass Customization, David M Anderson and B Joseph Pine, Irwin Professional Publishing, Chicago, USA, 1997.

ADVANCED MOULDING TECHNIQUES				
Course Code	20MST243	CIE Marks	40	
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	60	
Credits	04	Exam Hours	03	
Mod	ule-1			
Injection Moulding Technology: Microprocessor control loop control, CNC control, multi color injection moulding sandwich injection moulding. Metal injection moulding product like EPS, steam chest moulding, future trends in locking alignment of large moulds, processing of specia	l injection moulding mac ng, rotary injection mould contact injection mould n injection moulding like lty polymers.	hine, close loop control, ding, structural foam mou ing, moulding of cellular external & internal inter	open 1lding,	
Mod	lule-2			
Extrusion: General consideration during extrusion processhape & size of granular hygroscopic nature over tempe defects like shark skin, elastic turbulence, influence of T strength, manufacturing of woven sacks etc. co extrusio oriented pipe.	ess like specific heat, late rature, effect of flow pro G, TM & crystal growth n, co extruded pipe, mult	nt heat, internal conductiv perty like relaxation time rate, cooling rate, impact i-layer pipe, foam pipe, b	vity, & t viaxial	
Mod	lule-3	0 11		
Lamination: Lamination by extrusion coating, twin scre mechanism in twin screw extruder, roll of side feeder & mechanism etc.	w extrusion, co-rotating of injection feeder, princip	& counter rotating, feeding les of compounding, mixi	ng ing	
Mod	lule-4			
Blow Moulding: Microprocessor / CNC controlled blow PET, pre-cut moulding, multi-layer blow moulding, Par RIM of Polyurethane, material for RIM, liquid RIM and RRIM.	v moulding machine, inje isian programming. Reac l its advantages over conv	ction stretch blow mouldi tion Injection Moulding (ventional injection mould	ing of (RIM): ing,	
	lule-5	· · ·	1	
PTFE Moulding: Processing techniques used for PTFE, Paste extrusion, lso statistic. Moulding and skewing tech Processing Technique: New techniques like Resin trans- rotation moulding, Electro plating and printings, Centrif	Material consideration, s inique for PTFE processi- fer moulding, Pultrusion. ugal casting, Shrink film	Intering, Ram extrusion, ng. Advancement in Othe Filament winding, multi , Clink film.	and er layer	
 Course outcomes: At the end of the course the student will be able to: Students will be able to demonstrate their know Thorough knowledge of Extrusion process. Apply knowledge in mold industry Demonstrate skills in various molding techniqu Learn newer techniques in molding technology 	vledge in the field of adv ne.	anced moulding methods		
 Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The question paper will have ten full questions carrying equal marks. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. 				
Textbook/ Textbooks Advanced Moulding Techniques by Shia-Chung Chen and Lih-Sheng Turng, Hanser Publications, 2016. ISBN978-1-56990-603-3 1. Injection Moulding, Rubin. 2. Extrusion –Berln.				

Reference Books

Extrusion Die Design, M. V. Joshi.
 Polymer Chemistry, Gowriker

ADVANCED MATERIALS AND PROCESSING				
Course Code	20 MST 244	CIE Marks	40	
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	60	
Credits	04	Exam Hours	03	
Mod	ule-1	•		
Classification and Characteristics: Metals, Nonferrous M	letals and Ferrous Metal	s, classification of Ferrou	s	
Metals and Non-Ferrous Metals, Types of Ceramics, Po	lymers and composites as	nd classification of comp	osites.	
General Properties and Structure: Atoms, molecules bor	nds in solids, Crystalline	 Defects in Metallic stru 	cture,	
Dislocations and plastic deformation - Strengthening me	echanism – grain size, dis	slocation - Cold work,		
precipitation hardening, dispersion hardening - phase re	actions, fatigue and Cree	p behaviour.		
Mod	ule-2			
Ferrous Alloys: iron carbon equilibrium diagrams - Stee	Is and cast irons - proper	ties, structure, composition	on and	
applications transformation hardening in steels - 111 dia	igrams - Heat treatment p	processes - Effect of alloy	ing	
elements - High alloy steels, Stainless steel types, tool S Managing steels, Non Ferrous Alloys, Alloys, of copper	Aluminium nickel ma	neat resistant steels, HSL	A,	
Zing composition heat treatment structure properties	and application	gliesium, mamum, lead, u	m,	
Zine - composition, near treatment, structure, properties				
Polymers and Polymerizations: Structure and properties	of thermonlastics and the	ermosets _ Engineering		
Applications - property modifications - Mechanical and	thermal behaviour – prod	cessing methods Ceramic	c.	
Nature and structure of Ceramics - Refractory Abrasive	s glasses - glass ceramics	- Advanced ceramics	5.	
processing methods.	glubbes glubb columnes			
Mad				
Composites: Definition classification and characteristic	uie-4	Volume fraction lam	inated	
composites particulate composites fibrous composites -	- Types of reinforcement	s - volume maction - fam	mateu	
production and properties of fiber reinforced plastics.	etal Matrix composites a	nd ceramic matrix compo	osites -	
Applications.	etur mutik compositos u		51005	
Mod	lule-5			
Processing of Polymers: composites, ceramics - thermal	spraying - Ion beam mad	chining diamond coating		
techniques-tribological applications.				
Course outcomes:				
At the end of the course the student will be able to:				
1. Understand and apply the various processing and mar	iufacturing techniques. (I	20-5)		
2. Knowledge of basics of process and important parame	eters of equipment design	1. (PO-3)	15)	
4. Understand the structure processing property relation	ship of metals and polym	numesis of polymers. (PO-	-1,3)	
5. Understand the basic issues involved in polymer blen	ds metal matrix composition	ites and ceramic matrix		
(PO-2)	us, metai maurx composi			
6 Understand the significance of alloving element and t	hase diagrams (PO-3.4)			
of enderstand the significance of anothing element and p	(i o o, i)			
Question paper pattern:				
The SEE question paper will be set for 100 marks and the	ne marks scored will be p	roportionately reduced to	o 60.	
• The question paper will have ten full questions	carrying equal marks.			
• Each full question is for 20 marks.				
• There will be two full questions (with a maxim	um of four sub questions) from each module.		
Each full question will have sub question cover	ing all the topics under a	module.		
• The students will have to answer five full quest	ions, selecting one full q	uestion from each module	e. 🔳	
Textbook/ Textbooks				
Advanced Materials and Processes - James W. Evans Lutgard C. De Jonghe. Springer Publications – 2016.				
1. Engineering Metallurgy - Raymond and Higgens - EI	1. Engineering Metallurgy - Raymond and Higgens - ELBS/EA			

2. Introduction to Material Science and Engineering James. F. Shackleford - Mc Millan, NY - 7th edition.

- 1. Powder Metallurgy-Metals Hand Book -ASM, USA Vol.7, 1974.
- 2. Composite Materials Science and Engineering Chawla K.K., Springer Verlag, New york 2nd edition, 1998.
- 3. Cast Metal Matrix Composites ASM Metals Hand Book P.K. Rohagti VI5.
- 4. Elements of Material Science and Engineering Van Vlack L.H. Addison Wesley, NY- 1989.
- 5. Material science and metallurgy by Callister, John Willey & Sons.

MODELING, SIMULATION AND ANALYSIS OF MANUFACTURING SYSTEMS

Course Code	20MST251	CIE Marks	40		
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	60		
Credits	04	Exam Hours	03		
Moo	lule-1				
Principles of Modelling & Simulation: Basic Simulation	n Modeling, Limitation	of Simulation, Monte – Car	lo		
Simulation, Areas of Applications, Discrete and Continu	uous Systems.				
Module-2					
Modeling Approaches: Modeling Complex Systems, Si	mulation Software, Bas	ics Probability and Statistics	s,		
Building Valid and Credible Simulation Models.					
Module-3					
Random Number and Variable Generation: Selecting Input Probability Distributions, Random Number					
Generators, Generating Random Variants, and Output Data Analysis for a Single System.					

Module-4

Statistical Techniques: Comparison of Alternative Systems, Variance Reduction Techniques.

Module-5

Simulation Studies: Discrete Event Simulation, Simulation of Inventory Problems, Experimental Design and Optimization, Simulation of Manufacturing Systems, Case Studies.

Course outcomes:

At the end of the course the student will be able to:

- 1. Know about various techniques of simulation and modeling used to analyse manufacturing system.
- 2. Undergo various case studies using real time simulation.
- 3. understand variables involved and analyse output.
- 4. Awareness of statistical techniques
- 5. knowledge of simulation in real time applications.

Question paper pattern:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.

- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbook/ Textbooks

1. Simulation, Modeling and Analysis -Averill Law & David M.Kelt on, TMH 3rd Edition.

2. Discrete event and Simulation Systems – Banks & Carson, Prentice Hall Inc.

- 1. "System Simulation" Gordon, PHI.
- 2. "System Simulation with Digital computer" Deo, PHI
- 3. "Computer Simulation and Modeling" Francis Neelam kovil, John Wiley & Sons.

BIO MATERIAL AND TECHNOLOGY				
Course Code	20MST252	CIE Marks	40	
Teaching Hours/Week (L:P: SDA)	4:0:0	SEE Marks	60	
Credits	04	Exam Hours	03	
Mod	lule-1			
Introduction: Definition of Bio material, Classification	of Bio materials, Compar	ison of properties of some	e	
common bio materials, effects of physiological fluid on	properties of biomaterial	s, surface properties, phy	sical	
and Mechanical properties of Bio materials. Metallic Im	plants Materials: Stainle	ss Steel, Co-based alloys,	Ti	
and Ti based alloys, Important of stress corrosion cracki	ng, Host tissue reaction v	with Bio metal, corrosion		
behaviour, hard tissue replacement implant, orthopaedic	implant, dental implants	, Percutaneous and skin		
Implants, vascular implants, Heart valve implant.	ulo_2			
Polymeric Implant Materials: polyolefins, polyamides, a	acrylic polymers fluoro c	arnon polymers Silicon	rubber	
acetals. Visco elastic behaviour, creep recovery, stress r	elaxation, strain rate sens	sitivity, importance of	uooci	
molecular structure, hydrophilic and hydrophobic surfac	e properties, migration o	f additives, aging and		
environmental stress cracking, physiochemical characte	ristics of bio polymers, b	io degradable polymers for	or	
medical purpose and their biological applications. Cerar	nic Implant Materials: De	efinitions of Bio ceramics	8,	
common type of Bio ceramics, Aluminium oxides, Glas	s ceramics, Carbons. Bio	resorbable and Bioactive		
ceramics, importance of wear resistance and low fractur	e tougnness. Host Tissue	reactions, importance of		
interracial tissue reaction.				
Mod	lule-3			
Composite Implant Materials: Mechanics of improveme	ent of properties by incor	oorating different element	ts.	
Composite theory of fiber reinforcement, polymers fille	d with osteogenic fillers	(e.g. hydrosyapatite). Hos	st	
tissue reactions. Bio Compatibility And Toxicological S	creening Of Bio Materia	ls: Definition of bio		
compatibility, blood compatibility and tissue compatibil	ity, toxicity tests, acute a	nd chronic toxicity (in si	tu	
implantation, tissue culture, haemolysis, thrombogenic,	potential test, systemic to	oxicity, intracutaneous irr	itation	
test), sensitization, carcinogenicity, mutagenicity and sp				
Testing Of Bio Materials Implants: In vitro testing (Med	chanical testing): tensile.	compression, wears, fatig	me.	
corrosion studies and fracture toughness. In vivo testing	(animals): biological per	formance of implants. Ex	,ue, (0-	
vivo testing, standards of implant materials.		1		
Mod Starilization Tachniques: ETO, gamma radiation, autoal	lule-5 aving Effacts of Starilian	tion on material propertie	20	
Stermsation Techniques. ETO, gamma radiation, autoci	aving, Effects of Sterms	ation on material properti	es.	
Course outcomes: At the and of the course the student will be able to:				
At the end of the course the student will be able to.	iale			
 Knowledge of its testing methods 	1415			
 will be able to understand the significance of i 	ts use in various industria	al applications.		
 Apply sterilization techniques in industry. 		an approved on the second s		
• Develop models to demonstrate his knowledge				
Question noner nottorn:				
The SEE question paper will be set for 100 marks and the	e marks scored will be n	roportionately reduced to	60	
• The question paper will base ten full questions	carrying equal marks	roportionatery reduced to	00.	
 Each full question is for 20 marks. 	eurijing equur munts.			
• There will be two full questions (with a maxim	um of four sub questions) from each module.		
• Each full question will have sub question covering all the topics under a module.				
• The students will have to answer five full quest	ions, selecting one full q	uestion from each module	e. 🔳	
Taythook/Taythooks				
1 Biological performance of materials Ionathan Black	MarceDecker 1981			
2., Blood Compatible Materials and Devices, C.P. Shar	na & M. Szyehen, Techn	onic Publishing Co Ltd.	1991.	
· · · · · · · · · · · · · · · · · · ·	<i>, , , , , , , , , , , , , , , , , , , </i>	<u> </u>		

- 1, Polymetric Biomaterials. Piskin and S.Hofmann Mantinus Nijhoff publication bordrechnt 1986.
- Biomaterials, Science and engineering, J.B. Park, Plenum Press 1984
 Biomaterials, Sujata V. Bhat, Narosa Publishing House 2002

MECHANICAL BEHAY	VIOUR OF MAT	ERIALS	MECHANICAL BEHAVIOUR OF MATERIALS				
Course Code 20MST253 CIE Marks 40							
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	60				
Credits	04	Exam Hours	03				
Moo	lule-1						
Strength of materials- basic assumptions, elastic and pla	astic behaviour, str	ess-strain relationship for elasti	c				
behaviour, elements of plastic deformation of metallic r	naterials Mohr's c	ircle, yielding theories. Theory	of				
plasticity: Elements of theory of plasticity, dislocation t	heory properties of	f dislocation, stress fields aroun	d				
dislocations, application of dislocation theory to work h	ardening, solid sol	lution strengthening, grain boun	dary				
strengthening, dispersion hardening.							
Moo	lule-2						
Ductile and Brittle Fracture: Ductile and brittle fracture	, Charpy and Izod	testing, significance of DBTT, 1	ECT,				
NDT and FATT; elements of fractography - Griffith's t	heory, LEFM– CC	D and J integral –determination	1 of				
KIC, COD and J integral. Characteristics of fatigue fail	ure: Initiation and	propagation of fatigue cracks, fa	actors				
affecting fatigue strength and methods of improving fat	igue behaviour – to	esting analysis of fatigue data					
mechanics of fatigue crack propagation, corrosion fatig	ue.						
Moo	lule-3	1 . 1					
Introduction to creep: - creep mechanisms, creep curve,	variables affecting	g creep, accelerated creep testin	g,				
development of creep resistant alloys, Larsen Miller par	rameter – Manson	Harred parameter.					
Moo	lule-4						
Stages of failure analysis, classification and identification	on of various types	s of fracture. Overview of fracture	re				
mechanics, characteristics of ductile and brittle fracture	. General concepts	, fracture characteristics reveale	ed by				
microscopy, factors affecting fatigue life Creep, stress r	upture, elevated te	mperature fatigue, metallurgica	1				
instabilities, environmental induced failure. Some case	studies failures.						
Moo	lule-5						
Types of wear, analyzing wear failure. Corrosion failure	es- factors influence	cing corrosion failures, overviev	v of				
various types of corrosion stress corrosion cracking, sou	irces, characteristi	cs of stress corrosion cracking.					
Procedure for analyzing stress corrosion cracking, vario	ous types of hydrog	gen damage failures. Causes of f	failure				
in forging; failure of iron and steel castings, improper h	eat treatment, stres	ss concentration and service					
conditions. Failure of weldments - reasons for failure pr	rocedure for weld	tailure analysis.					
Course outcomes:							
At the end of the course the student will be able to:							
 Students will develop skill sets to analyse beha 	viour of materials						
• analyse its characteristics to find its adoptability for an industrial application.							
Identify various stages of failure							
• Thorough knowledge of wear							
• Understand the stages of failure							
Question naper nattern:							
The SEE question paper will be set for 100 marks and f	he marks scored w	ill be proportionately reduced to	o 60.				
The question paper will have ten full questions	carrying equal ma	rks.					
 Each full question is for 20 marks 	 Fach full question is for 20 marks 						
• There will be two full questions (with a maxim	• There will be two full questions (with a maximum of four sub questions) from each module.						

- •
- Each full questions will have sub questions covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. •

Textbook/ Textbooks

- 1. Mechanical Behaviour of Materials (MCGRAW HILL SERIES IN MATERIALS SCIENCE AND ENGINEERING) Hardcover Import, 1 Mar 1990 Thomas Courtney.
- 2. Mechanical Behavior of Materials: Second Edition Front Cover Thomas H. Courtney Waveland Press, 16-Dec-2005 Technology & Engineering.
- 3. Mechanical Metallurgy', Dieter G. E 3rd Edition, McGraw Hill, 1988.
- 4. Testing of Metallic Materials', Suryanarayana Prentice Hall India, 1979.
- 5. Structure and Properties of Materials', Rose R. M., Shepard L. A., Wulff J., Volume III, 4th Edition, John Wiley, 1984

Reference Books

1. ASM Metals Handbook "Failure Analysis and Prevention", ASM Metals Park. Ohio, Vol.10, 10th Edition, 1995.

2. "Analysis of Metallurgical Failures", Colangelo.V.J. and Heiser.F.A., John Wiley and Sons Inc. New York, USA, 1974.

NON-DESTRUCTIVE TESTING

Course Code	20MST254	CIE Marks	40
Teaching Hours/Week (L:P:SDA)	4:0:0	SEE Marks	60
Credits	04	Exam Hours	03
Mod	ule-1		

Introduction to ND Testing: selection of ND methods, visual inspection, leak testing, Liquid penetration inspection, its advantages and limitation. Magnetic Particle Inspection: Methods of generating magnetic field, types of magnetic particles and suspension liquids steps in inspection – application and limitations.

Module-2

Eddy Current Inspection: principles, operation variables, procedure, inspection coils, and detectable discounts by the method. Microwave Inspection: Microwave, holography, applications and limitations. Ultrasonic Inspection: Basic equipment characteristics of ultrasonic waves, variables inspection, inspection methods pulse echo A, B, C scans transmission, resonance techniques, transducer elements couplets, search units, contact types and immersion types inspection standards-standard reference blocks.

Module-3

Radiography Inspection: principles, radiation source X-rays and gamma rays, X-ray tube, radio graphic films, neutron radiography, Thermal inspection principles, equipment inspection methods applications.

Module-4

Optical Holography: Basics of Holography, recording and reconstruction – Acoustical Holography: systems and techniques applications. Indian standards for NDT.

Module-5

Visual Inspection and Thermographic methods: Acoustic emission, Total acoustic emission, felicity ratio, Generation of Acoustic Emission.

Course outcomes:

At the end of the course the student will be able to:

1. Understand and analyze the significance and suitability of various non-destructive testing for different industrial applications. (PO-1,2)

2. Analyze different metals and alloys by visual inspection method and Thermo graphic method. (PO-2,3)

3. Perform non-destructive tests like: Liquid penetrant test, Magnetic particle test, Eddy current test and

Ultrasonic test, X-ray and Gamma ray radiography. (PO-4,5)

4. Identify defects by using relevant NDT methods. .(PO-2,3)

5. Apply the knowledge of optical holography and industrial applications according to Indian standards for NDT. (PO-1,2)

Question paper pattern:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.

- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbook/ Textbooks

Non-Destructive Testing Techniques Hardcover – 1 Jan 2010 by Ravi Prakash

. The Testing Instruction of Engineering Materials - Davis H.E Troxel G.E wiskovil C.T- McGraw hill.

Reference Books

1. Non-Destructive Testing - Mc Gonnagle JJ - Garden and reach New York.

2. Non-Destructive Evolution and Quality Control - volume 17 of metals hand book 9 edition Asia internal 1989.

TITLE OF THE LABORATORY Materials Cha	racterisation L	aboratory - 2	
Course Code	20MSTL26	CIE Marks	40
Teaching Hours/Week (L:P: SDA)	0:4:0	SEE Marks	60
Credits	02	Exam Hours	03
SI.NO	Experiments		
1. Polishing Etching and microstructure analysis of Mi	ld steel, Aluminiun	n and Copper	
2. Study of variation in Microstructure of dual phase sta	ainless steels after h	neat treatment	
3. Hardness analysis of polymer, Aluminium and mild	steel (Before and at	fter heat treatment)	
4. Temperature Data Aquisition System			
5. Study of Ultrasonic Flaw detector			
6. Study of Atomic Force Microscopy			
7. Study of Scanning electron microscopy			
8. Casting of Aluminium alloy			
9. Specimen preparation and tensile and compressive te	st of Aluminium al	loy	
10. Specimen preparation and impact testing of Alumin	ium alloy.		
	-		
Any 6 experiments to be taught			

TECHNICAL SEMINAR			
Course Code	20MST27	CIE Marks	100
Number of contact Hours/week (L:P:SDA)	0:2:0	SEE Marks	
Credits	02	Exam Hours	

The objective of the seminar is to inculcate self-learning, face audience confidently, enhance communication skill, involve in group discussion and present and exchange ideas.

Each student, under the guidance of a Faculty, is required to

- Choose, preferably through peer reviewed journals, a recent topic of his/her interest relevant to the Course of Specialization.
- Carryout literature survey, organize the Course topics in a systematic order.
- Prepare the report with own sentences.
- Type the matter to acquaint with the use of Micro-soft equation and drawing tools or any such facilities.
- Present the seminar topic orally and/or through power point slides.
- Answer the queries and involve in debate/discussion.
- Submit two copies of the typed report with a list of references.

The participants shall take part in discussion to foster friendly and stimulating environment in which the students are motivated to reach high standards and become self-confident.

The CIE marks for the seminar shall be awarded (based on the relevance of the topic, presentation skill, participation in the question and answer session and quality of report) by the committee constituted for the purpose by the Head of the Department. The committee shall consist of three faculties from the department with the senior most acting as the Chairperson.

Marks distribution for CIE of the course 20XXX27 seminar: Seminar Report: 30 marks Presentation skill:50 marks Ouestion and Answer:20 marks

*** END OF II SEMESTER***

PLAST	FIC PROCESSING		
Course Code	20MST31	CIE Marks	40
Teaching Hours/Week (L:P:SDA)	3:0:2	SEE Marks	60
Credits	04	Exam Hours	03
	Module-1		00
Plastic Processing: Basic principle of processing, behavior, Rheology of ideal fluids, and real polyn performance. Injection Moulding: Principles, pro- function, specification, construction and maintena procedure, cylinder, nozzles, interaction of mould concepts and their relationship to processing, trou injection moulding machines.	shape and size, processing mers, Effects of melt beh cess variables, moulding ance of injection mould ling variables, press capa ble shooting in injection	ng parameters, their effect ar avior on processing and proc cycle, machinery used, parts ng machine, start up and shut acity, projected area, shot we moulding, microprocessors	nd luct s and t down ight, controlled
	Module-2		
Extrusion: Basic principles of extruders, and extru drive mechanics, head, constructional features of filaments and tubes, blown film lines, wire and ca process variables in extrusion like heating, temper orientation, treating, printing and sealing, quality and Transfer Moulding: Techniques, various type moulding faults and remedies. Transfer moulding press capacity, integral mold, and auxiliary mould remedies	usion process, different t dies, sizing and haul-off ble covering system, pip rature control, dies well, of extruder products, fau s of compression mould , its advantage over com l, moulding cycle, ram p	ypes of extrudes i.e. barrel, s requipment for extruders of r pe profile extrusion, co-extru and melt fracture, spacing an alt, causes and remedy. Comp s, machinery used, and comm pression moulding, equipme ressure, clamping pressure, f	screw, mono sion, nd pression non nt used, Caults and
Temedies.	Modulo 3		
blow moulding machine, extrusion blow moulding Basic principles, types of thermoforming, thermof Rotational Moulding: Basic principle, charge size remedies.	g, moulding cycle, faults forming moulds, process , wall thickness, temper Module-4	s and remedies. Thermo Forn sing parameters, faults and re ature control, fault causes and	ning: emedies. d
Calendaring: Basic principle, process variable, en techniques like powder coating, casting, machining	d product properties and ng, and joining of plastic	applications, secondary proc s, metalizing, printing.	cessing
	Module-5		
Processing of Engineering Plastics: precautions, a control, and waste management. Ram Extrusion o winding, Hand-lay-up, spray moulding, SMC, DM	nd start up procedure, p f PTFE, Processing of r AC, Centrifugal casting,	reheating, shutdown procedu einforced plastics, like filame pultrusion, resin transfer mo	rre, quality ent ulding.
Course outcomes:			
 At the end of the course the student will be able to Students will demonstrate their understand thermo forming. Application of various processes for prace Knowledge of different plastic materials. Design & Execution of plastic processing Metallurgical behavior of materials. 	o: nding of plastic processi ctical purposes. g equipments.	ng, injection moulding, extru	usion and
Question paper pattern:			
 The SEE question paper will be set for 100 marks The question paper will have ten full que Each full question is for 20 marks. There will be two full questions (with a r Each full question will have sub question The students will have to answer five full 	and the marks scored we estions carrying equal mat maximum of four sub qua covering all the topics l questions, selecting on	vill be proportionately reduce arks. estions) from each module. under a module. e full question from each mo	d to 60. dule. ■

Textbook/ Textbooks

Handbook of Plastic Processes Editor(s): Charles A. Harper First published:7 October 2005 Print ISBN:9780471662556 |Online ISBN:9780471786580 |DOI:10.1002/0471786586 Copyright © 2006 John Wiley & Sons, Inc. Plastics processing technology Front Cover Edward A. Muccio ASM International, 1994 - Technology & Engineering - 320 pages Plastic Processing Data Hand Book – Dominic V Rosat o P.E. Modern Plastics Hand Book – Charles A Harper.

- 1. Injection Mould Design, Pye R.G. W. New York-John Wiley & Sons 12th Ed.1989.
- 2. Injection Moulding Theory & Practice, Rubin. J. Irvin, New York John Wiley & Sons.
- 3. Blow Moulding Hand Book, Rosato, New York-Oxford University-Hanser Publishers.
- 4. Principles of Rotational Moulding Process, Bruins.

EXPERIMENTAL METHODS IN ENGINEERING					
Course Code	20MST321	CIE Marks	40		
Teaching Hours/Week (L:P:SDA)	3:0:0	SEE Marks	60		
Credits	03	Exam Hours	03		
Module-1					
Introduction: Basic concepts of measurement methods,	single and multipoint mea	surement Min space and	time.		
Processing of experimental data, curve fitting and regres	ssion analysis. Data Acqu	isition systems: Fundame	entals		
of digital signals and their transmission, A/D-and D/A c	onverters, Basic compone	ents of data acquisition sy	ystem.		
Computer interfacing of digital instrument and data acqu	uisition systems; Digital r	nultiplexes, Data acquisi	tion		
board (DAQ), Digital image processing fundamentals.					
Mod	lule-2	Test sells for floor			
besign and Construction of Experimental facilities: will visualization and temperature mapping. Modeling and S	imulation of Mossuremo	, Test cells for flow	1010		
first order and second order systems: Frequency response	se and time constant calcu	ilation Response of a	515,		
generalized instrument to random data input FFT analy	sis	nation. Response of a			
Mod	lule-3				
Temperature Measurement: Measurement Design Cons	truction and Analysis of I	iquid and gas thermomet	ers		
resistance thermometer with wheat stone bridge. Thermometer	o-electric effect. Construe	ction, testing and calibrat	ion of		
thermocouples and thermopiles. Analysis of effect of be	ad size and shielding on t	time constant and frequer	icv		
response, characteristics of thermocouple, pyrometers, r	adiation thermometers. Ir	terferometry & Humidit	v		
measurement: interferometers, Humidity measurement:	Conventional methods, el	lectrical transducers, Dur	imox		
humidity and microprocessor-based dew point instrume	nt, Calibration of humidit	y sensors.			
Mod	lule-4				
Flow and Velocity Measurement: Industrial flow measu	ring devices, design, sele	ction and calibration, vel-	ocity		
measurements, pitot tubes, yaw tubes, pitot static tubes;	frequency response and t	ime constant calculation.	Hot-		
wire anemometer; 2d/3d flow measurement and turbuler	nce measurement, Laser a	pplication in flow			
measurement, Flow visualization techniques, Combustic	on photography.				
Mod	lule-5				
Measurement of Pressure, Force, and Torque: Analysis	of liquid manometer, dyn	amics of variable area an	d		
inclined manometer, Pressure transducers, Speed and to	rque measurement: speed	and torque measurement	t of		
rotating system. Air Pollution sampling and measureme	nt: Units for pollution me	asurement, gas sampling			
techniques, particulate sampling technique, gas chromat	ography.				
Common and a second sec					
Course outcomes: At the and of the course the student will be able to:					
At the end of the course the student will be able to.	romant tachniquae which	they can adopt in practic	a 1		
applications	itement teeninques which	they can adopt in practic	.ai		
 Ability to set up experimental facilities 					
I earn temperature measurements					
 Knowledge of flow and velocity measurement. 					
Learn different measurement techniques for pr	ressure force				
Question paper pattern:					
The SEE question paper will be set for 100 marks and the	he marks scored will be p	roportionately reduced to	60.		
• The question paper will have ten full questions	carrying equal marks.				
• Each full question is for 20 marks.					
• There will be two full questions (with a maxim	um of four sub questions)) from each module.			
• Each full question will have sub question cover	ing all the topics under a	module.			
• The students will have to answer five full quest	ions, selecting one full qu	lestion from each module	e. ∎		
Textbook/ Textbooks					
1. Experimental Methods for Engineers - J.P. Holman, N	AcGraw-Hill Publications	s, 8 th Edition.			
Reference Books					
1. Mechanical Measurements - Beckwith M.G., Marang	oni R.D. and Lienhard J.I	H., Pearson Education.			
2. Measurements Systems-Application and Design - E.C	D. Doebelin, Tata McGrav	wHill Publications.			

MANUFACTURING OF EL	ECTRONIC COMPON	NENTS	
Course Code	20MST322	CIE Marks	40
Teaching Hours/Week (L:P:SDA)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03
Mod	ule-1		
Introduction: Important components of Electronic produ	cts. Types of Semicondu	ictor materials and proper	ties
and their properties. Manufacturing ICs: The functions of	of Ics manufacturing of d	liodes. Production of a sin	igle I c
component classification of ic Architecture.			
Mod	ule-2		
Manufacturing of Silicon Water: fabrication of IC on sili Diffusion doping, Ion Implantation, Rapid thermal proce Lithography, Photolithography, Etching processes. Thin vapor deposition, Epitoxial growth, IC component interce	icon wafers Fabrication essing- Thermal oxidatio film Deposition: Physic connection, IC yield and	of IC on Silicon wafers. n Monolithic processing, al vapour Deposition, che economics.	emical
Mod	ule-3		
IC packing. Types of packaging process. Printed Circuit selection of substrate materials, Types of PCBs. Method	Boards: Typical substra s of manufacturing Of P	te (base) Materials and CBs.	
Mod	ule-4		
Electronic Assembly: General Description of Electronic through-hole and surface mount process.	Assembly detailed study	y of sequences of operatio	on for
Mod	ule-5		
Micro Electro-Mechanical systems Introduction to micro Silicon micro machining- Bulk & surface micromachinin brief description and applications of Thermal and Smart	o sensors MEMS, micro ng. Micro stereo lithogra sensors & MEMS Devic	machines fundamentals o phy. Micro sensors: Type ces.	of es &
 At the end of the course the student will be able to: Students will be able to realise intricate manufa electronic components. Demonstrate fabrication techniques. Thorough knowledge of circuit boards. Knowledge of MEMS Ability to identify various manufacturing proce 	acturing techniques assoc	ciated with manufacturing	ŗ.
 Question paper pattern: The SEE question paper will be set for 100 marks and th The question paper will have ten full questions 	e marks scored will be p carrying equal marks.	proportionately reduced to	o 60.
 Each full question is for 20 marks. There will be two full questions (with a maximu Each full question will have sub question cover The students will have to answer five full quest 	um of four sub questions ing all the topics under a ions, selecting one full q	 a) from each module. b) module. c) module. c) module. c) module. 	e. ∎
Textbook/ Textbooks 1.: Materials and processes in manufacturing, E. Paul De Edition 2004 2. Electronics materials handbook Vol 1., Minger ML Pa	egarmo, IT Black and Ro acking ASM	onald A Kohser Wiley stu	Ident
Reference Books1. RF: Semiconductor fundamentals Addisor-Wisley, Re2.: Electronic materials & processes handbook, CA HarpJarger RC: introduction to Microelectronic Fabrication.3.The science and Engineering of microelectronics, Cam	eading mass.1998. per & RM Sampson 2nd Addision – Wesley 1990 abell, Oxford University	Edition Mc GrawHill 199) 7 press 2001.	94.

NON-TRADITIONAL MACHINING				
Course Code	20MST323	CIE Marks	40	
Teaching Hours/Week (L:P:SDA)	3:0:0	SEE Marks	60	
Credits	03	Exam Hours	03	
Mod	ule-1			
of different processes. Ultra-Sonic Machining: Definition process, Tool feed mechanisms, Theories of mechanics, horn design, applications, Limitations. Abrasive Jet Mac process parameters on MRR, applications, advantages a Equipment, Operation, Application, Advantages and lim	ses, Process selection, cl n, Mechanism of metal r effect of parameters, Dif chining: Principle, Proces nd disadvantages. Water itations of water Jet mac	assification, comparative emoval, elements of the fferent types of concentra ss parameters, Influence of Jet Machining: Principle hinery.	study tors, of e,	
Mod	ule-2			
Thermal Metal Removal Processes: Electric discharge removal, basic EDM circuitry, spark erosion generators, rate in relaxation circuits, critical resistance parameters erosion- surface finish, applications. Electro Chemica Principle of ECM, Chemistry of the ECM process, I removal rate, dynamics of ECM process, Hydrody advantages and disadvantages-applications. Electric Electrochemical deburring.	machining, Principle of Analysis of relaxation ty in Ro Circuit, Die elec al machining (ECM): C parameters of the process namics of ECM process of Chemical grinding,	operation, mechanism of ype of circuit, material, re- tric fluids, Electrodes for Classification of ECM p ss, Determination of the ss, polarization, Tool I Electro Chemical I	f metal emoval r spark rocess, e metal Design, noning,	
Mod	ule-3			
Chemical Machining: Introduction, fundamental principle types of chemical machining, Maskants, Etchants, Advantages and disadvantages, applications, chemical blanking, chemical milling (contour machining), Hydrogen embrittlement. Plasma arc Machining: Introduction, Plasma, Generation of Plasma and equipment, Mechanism of metals removal, PAM parameters, process characteristics, types of torches, applications. Electron beam machining (EBM): Introduction, Equipment for production of Electron beam, Theory of electron beam machining, Thermal & Non thermal type, Process characteristics, applications.				
Laser Beam Machining: Introduction, principles of gen Types of Lasers, Process characteristics, advantages and Laser: Principle, Equipment, Applications. Ion Beam M applications.	eration of lasers, Equipr l limitations, applications achining: principle, equi	nent and Machining Pro- s of laser beam machinin pment, working, sputterin	cedure, g. CO2 ng rate,	
Mod	ule-5			
High Velocity forming processes: Introduction, deve conventional and high velocity forming methods.Type process, electro-hydraulics forming, magnetic pulse form	lopment of specific pro s of high velocity formin ning. Applications, Adva	ncess, selection, comparing methods: explosion for antages and limitations.	son of orming	
 Course outcomes: At the end of the course the student will be able to: Student will be in a position to appreciate the men Industries. Justify and demonstrate the benefits of non-tradit processes. Students will be able to decide a process suitable for sources. understand the applicability of the process and its ben 5. Ability to setup NTM in any industry. 	its of non traditional m ional machining proces or a particular material l efits.	achining and its applica ses over traditional mac based on the availability	tion in chining of the	
 Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60. The question paper will have ten full questions carrying equal marks. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. 				
 Each full question will have sub question cover The students will have to answer five full quest 	ing all the topics under a ions, selecting one full q	module. uestion from each module	e.	

Textbook/ Textbooks

- 1. Modern Machining Process P.C Pandey & H.S Shan Tata Mc Graw Hill.
- 2. Modern Machining Processes P.K Mishra, Paperback Import, 30 Jan 1997, Narosa publishers.
- 3. Thermal Metal Cutting Processes-Dr.B.J. Ranganatha, I K International, New Delhi

- 1. New technology Bhattacharya, Institution of Engineers, India
- 2. Production technology HMT Tata Mc Graw Hill.
- 3. Metals hand book ASM Vol-3.
- 4. High velocity forming of metals F.M Wilson ASTME PrenticeHall.
- 5. Modern Manufacturing Methods Adithan

VACUUM SCIENC	E & CRYOGENICS		
Course Code	20MST324	CIE Marks	40
Teaching Hours/Week (L:P:SDA)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03
Mod	lule-1		
Behavior of Gases; Gas Transport Phenomenon, Viscou of Pressure, Residual Gas Analyses; Production of Vacu Ion pumps, Cryopumps.	s, molecular and trans ium - Mechanical pum	ition flow regimes, Measure ps, Diffusion pump, Getter	ement and
Mod	lule-2		
Materials in Vacuum; High Vacuum, and Ultra High Va engineering materials at low temperatures; Cryogenic F	cuum Systems; Leak I luids - Hydrogen, Heli	Detection. Properties of um 3, Helium 4.	
Mod	lule-3		
Superfluidity, Experimental Methods at Low Temperatu Cycle He3 refrigerator, He4 refrigerator, He3-He4 dilut Refrigerator System, Magnetic Refrigerators, Thermoel	re: Closed Cycle Refr ion refrigerator, Pomer ectric coolers;	igerators, Single and Double anchuk Cooling, Pulsed	e
Mod	lule-4		
Cryostat Design: Cryogenic level sensors, Handling of o	cryogenic liquids, Cryo	ogenic thermometry.	
Mod	lule-5		
Cryogenic Refrigerators: J.T. Cryocoolers, Stirling Cyc. Refrigerators, Regenerators used in Cryogenic Refrigera Cryogenic liquids, Design of storage vessels.	e Refrigerators, G.M. ators, Magnetic Refrig	Cryocoolers, Pulse Tube erators Storage and transfer	of
CO1: Students will learn about the behavior gasses.CO2: The concept of low, high and ultra-high vacuum aCO3: The concept of Low temperature, liquification's otemperature ranges.CO4: Learn about the design of low temperature systemCO5: Understanding of cryogenics.	nd its measurements. f the gases to create lo s.	w temperature in different	
 Question paper pattern: The SEE question paper will be set for 100 marks and the The question paper will have ten full questions Each full question is for 20 marks. There will be two full questions (with a maxime Each full question will have sub question coverties The students will have to answer five full questions 	ne marks scored will be carrying equal marks. um of four sub questio ing all the topics unde ions, selecting one ful	e proportionately reduced to ns) from each module. r a module. l question from each module	o 60. e. ∎
Textbook/ Textbooks 1. Vacuum science and technology by Paul A Redhead, 2. Handbook of Vacuum Science and Technology by De 3. Foundations of Vacuum Science and Technology by J	American Institute of orothy Hoffman, Acad James M. Lafferty, Wi	Physics. emic Press ley-Interscience	
 Reference Books 1. F. Barron, <i>Cryogenic Systems</i>, McGraw Hill, 2. K. D. Timmerhaus and T.M. Flynn,, <i>Cryogenic</i> 3. Mukhopadhyay, <i>Fundamentals of Cryogenic</i> H 4. R. B. Scott, <i>Cryogenic Engineering</i>, Van Nost 	1985. 2 Process Engineering, Engineering, PHI Lear rand and Co., 1962	, Plenum Press, 1989 ning Pvt. Ltd., New Dlehi, 2	2010

ELECTRONIC, OPTICAL AND MAGNETIC PROPERTIES OF MATERIALS			
Course Code	20MST331	CIE Marks	40
Teaching Hours/Week (L:P:SDA)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03
Mod	lule-1		
Lattice Vibrations: Hamiltonian Mechanics, Vibrations	in Crystals-Phonons, Ela	stic Bandgap. Review of	free
electron and band theories of solids, Electrical conduction	on in metals and semicon	ductors, Hall effect,	
Temperature dependence of electrical conductivity.	L-1- A		
	lule-2		
Quantum Mechanics: Schrodinger's Equation, 1-Dimen	sional Problems, Measur	ements-The Ehrenfest	
Theorem, Three Dimensions-Hydrogen Atom.			
Mod	lule-3		
Electronic Band Structures: Periodic Potential, Central I	Equation, Understanding	Band Diagrams, Enginee	ring
conductivity in Semiconductors.			
Mod	lule-4		
Solid-State Devices: PN Junctions, Solar Cells, LEDs.	Optical Properties: Wave	Equation, E/M Waves at	
Interfaces, Photonic Crystals.			
Mod	lule-5		
Magnetic Properties: Introduction, Dia, Para and Ferron	nagnetism, Weiss Field an	nd Magnetic Domains, A	nti
ferromagnetism and Ferri magnetism. Ferromagnetic an	isotropy and magnetostri	ction. Magnetic energy a	nd
Domain structure, Hysteresis loop. Soft and Hard magne	etic Materials.		
Course outcomes:			
At the end of the course the student will be able to:			
• Understand the various properties of materials			
• Knowledge of materials			
Ability to identify materials for practical purpo	se.		
 Identify the potential of the materials. Bool time application 			
Real time application.			
Question paper pattern: The SEE question paper will be set for 100 marks and the	a marks soored will be n	roportionately reduced to	60
The question paper will have ten full questions	carrying equal marks	Toportionatery reduced to	00.
 Fach full question is for 20 marks 	carrying equal marks.		
 There will be two full questions (with a maxim 	um of four sub questions) from each module	
 Each full question will have sub question cover 	ing all the topics under a	module.	
• The students will have to answer five full quest	ions, selecting one full a	uestion from each module	e. 🔳
Textbook/Textbooks	0 1		
1 Electronic Magnetic and Optical Materials (Advance	ad Matarials and Tashnal	ogias) Prodoon Fulay &	Jung
Kun Lee CRC Press Taylor & Francis Group		logies)-riaucep rulay &	Jung-
2. Hyperlink: https://www.edx.org/course/electronic-op/	tical-magnetic-properties	-mitx-3-024x	
3. Electronic properties of Materials, Hummel, R.E., Sp	ringer		
4. Magnetic Materials, Azaroff, L.I, McGrawhill.	-		

PARTICULATE TECHNOLOGY

Course Code	20MST332	CIE Marks	40
Teaching Hours/Week (L:P:SDA)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03
Mod	ule-1		

Introduction to particulate processing - advantages, limitations and applications of particulate processing.

Module-2

Science of particulate processing – issues related to particle morphology – differences in mechanical behaviour (with respect to cast and wrought materials) and related mathematical treatment - similarities and differences between metal powder and ceramic powder processing.

Module-3

Production and characterisation of metal and ceramic powders – compaction processes –powder properties and powder compaction – Pressing, Hot Isostatic Processing and extrusion.

Module-4

Sintering – thermodynamic and process aspects – recent developments in mechanical alloying and reaction milling.

Module-5

Production of particulate composites - application of P/M based on case studies -manufacturing of typical products - near net shape processing.

Course outcomes:

At the end of the course the student will be able to:

- Understand the technology involved in Particles.
- Learn to various powder processing techniques.
- Commercial application of knowledge.
- Identify the problems in Industry
- Suggest practical answers.

Question paper pattern:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.

- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module. ■

Textbook/ Textbooks

- Introduction to Particle Technology, Second Edition Author(s): Martin Rhodes chemical engineering, PhD, First published:7 March 2008 Print ISBN:9780470014271 |Online ISBN:9780470727102
 [DOI:10.1002/9780470727102 Copyright © 2008 John Wiley & Sons, Ltd.
- 2. Powder Metallurgy Science', German R.M, Metal Powder Industries Federation, NewJersey, 1994.
- 3. Powder Metallurgy Processing New Techniques and

Analysis', Kuhn H. A. and Alan Lawley Oxford IBH, Delhi, 1978

CORROSION SCIENCE AND TECHNOLOGY

Course Code	20MST333	CIE Marks	40
Teaching Hours/Week (L:P:SDA)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03
	Module-1		
Definition of corrosion, corrosion damage, cla	assification of corrosion, electr	rochemical aspects, electro	chemical
reactions, mixed potential theory, Electrode p	otential, Nernst equation. oxy	-reduction potentials.	
	Module-2		
Corrosion thermodynamics - Pourbaix diagra	ams; Polarization of the corros	ion cell; Activation control	lled
kinetics and concentration polarization, Evan	s diagrams, partial corrosion re	eactions- anodic dissolutio	n of
metals; Cathodic reactions - oxygen reduction	n and hydrogen evolution.		
	Module-3		
Corrosion of materials in natural environment	ts; Atmospheric corrosion, ger	neral characteristics, mecha	anism and
Corrosion of materials in natural environment prevention; soil corrosion – general character	ts; Atmospheric corrosion, ger istics, mechanism and prevent	neral characteristics, mecha ion. Localized corrosion d	anism and amages
Corrosion of materials in natural environment prevention; soil corrosion – general character and materials failure- passivity and transpassi	ts; Atmospheric corrosion, ger istics, mechanism and prevent ivity of metals, breakdown of	neral characteristics, mecha ion. Localized corrosion d passivity and pitting corros	anism and amages sion. Stress
Corrosion of materials in natural environment prevention; soil corrosion – general character and materials failure- passivity and transpassi – corrosion cracking of materials. Inter-granu	ts; Atmospheric corrosion, ger istics, mechanism and prevent ivity of metals, breakdown of p lar corrosion failure. Corrosio	neral characteristics, mecha ion. Localized corrosion d passivity and pitting corros n failure of ceramic materi	anism and amages sion. Stress als;
Corrosion of materials in natural environment prevention; soil corrosion – general character and materials failure- passivity and transpassi – corrosion cracking of materials. Inter-granu mechanisms of corrosion of ceramics, effect of	ts; Atmospheric corrosion, ger istics, mechanism and prevent ivity of metals, breakdown of p lar corrosion failure. Corrosio of chemical, phase compositio	neral characteristics, mecha ion. Localized corrosion d passivity and pitting corros n failure of ceramic materi n and structure on corrosic	anism and amages sion. Stress als; on
Corrosion of materials in natural environment prevention; soil corrosion – general character and materials failure- passivity and transpassi – corrosion cracking of materials. Inter-granu mechanisms of corrosion of ceramics, effect of resistance. Corrosion degradation of concrete	ts; Atmospheric corrosion, ger istics, mechanism and prevent ivity of metals, breakdown of p ilar corrosion failure. Corrosio of chemical, phase compositio	neral characteristics, mecha ion. Localized corrosion d passivity and pitting corros n failure of ceramic materi n and structure on corrosic	anism and amages sion. Stress als; on
Corrosion of materials in natural environment prevention; soil corrosion – general character and materials failure- passivity and transpassi – corrosion cracking of materials. Inter-granu mechanisms of corrosion of ceramics, effect of resistance. Corrosion degradation of concrete	ts; Atmospheric corrosion, ger istics, mechanism and prevent ivity of metals, breakdown of p ilar corrosion failure. Corrosio of chemical, phase compositio Module-4	neral characteristics, mecha ion. Localized corrosion d passivity and pitting corros n failure of ceramic materi n and structure on corrosic	anism and amages sion. Stress als; on
Corrosion of materials in natural environment prevention; soil corrosion – general character and materials failure- passivity and transpassi – corrosion cracking of materials. Inter-granu mechanisms of corrosion of ceramics, effect of resistance. Corrosion degradation of concrete	ts; Atmospheric corrosion, ger istics, mechanism and prevent ivity of metals, breakdown of p ilar corrosion failure. Corrosio of chemical, phase compositio	neral characteristics, mecha ion. Localized corrosion d passivity and pitting corros n failure of ceramic materi n and structure on corrosic metry. Paint tests, sea wat	anism and amages sion. Stress als; on er tests.
Corrosion of materials in natural environment prevention; soil corrosion – general character and materials failure- passivity and transpassi – corrosion cracking of materials. Inter-granu mechanisms of corrosion of ceramics, effect of resistance. Corrosion degradation of concrete Tafel and linear polarisation, AC impedance, Interpretation of results, Corrosion prevention	ts; Atmospheric corrosion, ger istics, mechanism and prevent ivity of metals, breakdown of p ilar corrosion failure. Corrosio of chemical, phase composition	neral characteristics, mecha ion. Localized corrosion d passivity and pitting corros n failure of ceramic materi n and structure on corrosic metry. Paint tests, sea wat n of environment, design,	anism and amages sion. Stress als; on eer tests. cathodic
Corrosion of materials in natural environmen prevention; soil corrosion – general character and materials failure- passivity and transpassi – corrosion cracking of materials. Inter-granu mechanisms of corrosion of ceramics, effect of resistance. Corrosion degradation of concrete Tafel and linear polarisation, AC impedance, Interpretation of results, Corrosion prevention and anodic protection coating.	ts; Atmospheric corrosion, ger istics, mechanism and prevent ivity of metals, breakdown of p ilar corrosion failure. Corrosio of chemical, phase compositio	neral characteristics, mecha ion. Localized corrosion d passivity and pitting corros n failure of ceramic materi n and structure on corrosic metry. Paint tests, sea wat n of environment, design,	anism and amages sion. Stress als; on er tests. cathodic
Corrosion of materials in natural environment prevention; soil corrosion – general character and materials failure- passivity and transpassi – corrosion cracking of materials. Inter-granu mechanisms of corrosion of ceramics, effect of resistance. Corrosion degradation of concrete Tafel and linear polarisation, AC impedance, Interpretation of results, Corrosion prevention and anodic protection coating.	ts; Atmospheric corrosion, ger istics, mechanism and prevent ivity of metals, breakdown of p ilar corrosion failure. Corrosio of chemical, phase compositio	neral characteristics, mecha ion. Localized corrosion d passivity and pitting corros n failure of ceramic materi n and structure on corrosic metry. Paint tests, sea wat n of environment, design,	anism and amages sion. Stress als; on er tests. cathodic
Corrosion of materials in natural environment prevention; soil corrosion – general character and materials failure- passivity and transpassi – corrosion cracking of materials. Inter-granu mechanisms of corrosion of ceramics, effect of resistance. Corrosion degradation of concrete Tafel and linear polarisation, AC impedance, Interpretation of results, Corrosion prevention and anodic protection coating.	ts; Atmospheric corrosion, ger istics, mechanism and prevent ivity of metals, breakdown of p ilar corrosion failure. Corrosio of chemical, phase compositio	neral characteristics, mecha ion. Localized corrosion d passivity and pitting corros n failure of ceramic materi n and structure on corrosic metry. Paint tests, sea wat n of environment, design, operations, bleach plants,	anism and amages sion. Stress als; on er tests. cathodic boilers,
Corrosion of materials in natural environment prevention; soil corrosion – general character and materials failure- passivity and transpassi – corrosion cracking of materials. Inter-granu mechanisms of corrosion of ceramics, effect of resistance. Corrosion degradation of concrete Tafel and linear polarisation, AC impedance, Interpretation of results, Corrosion prevention and anodic protection coating.	ts; Atmospheric corrosion, ger istics, mechanism and prevent ivity of metals, breakdown of p ilar corrosion failure. Corrosio of chemical, phase compositio	neral characteristics, mecha ion. Localized corrosion d passivity and pitting corros n failure of ceramic materi n and structure on corrosic metry. Paint tests, sea wat n of environment, design, operations, bleach plants, hers), infrastructure, and	anism and amages sion. Stress als; on eer tests. cathodic boilers,

At the end of the course the student will be able to:

- Good knowledge of Corrosion Science.
- Assessment of its impact on its environment.
- Suggest the right technique
- Understand the safety aspects
- Prevent Environment degradation.

Question paper pattern:

The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.

- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module. ■

Textbook/ Textbooks

Corrosion Science and Engineering (English, Hardcover, Pedeferri Pietro, Publisher: Springer International Publishing AG, 2016.

- 1. Mars G. Fontana, Corrosion Engineering, McGraw-Hill Book Company, 1986.
- 2. David Talbot and James Talbot, Corrosion Science and Technology, CRC Press, New York, 1998.
- 3. Denny A. Jones, Principles and Prevention of Corrosion, Maxwell Matemillar 1992.
- 4. D. A. Jones: Principles and Prevention of Corrosion, Macmillan Publ. Co. (1996).
- 5. 2. C. Scully: The Fundamental of Corrosion, 2nd ed., Pergamon Press: E. Stansbury and R. A. Buchanan, Fundamentals of Electrochemical Corrosion, ASM International (2000).
- 6. 3. M.G. Fontana: Corrosion Engineering, 3rd. Ed., McGraw Hill. (1986)
- 7. 4. J. M. West: Electrodeposition and Corrosion Control, J. Wiley W. Revie (ed.):
- 8. Corrosion Handbook, Electrochemical Society Series, John Wiley and Sons (2000).
- 9. 5. W. Revie (ed.): Corrosion Handbook, Electrochemical Society Series, John Wiley and Sons, 2000: Metals Handbook, Vol. 13: Corrosion, ASM International

- 1. Fontana, Mars G, Advances in corrosion science and technology vol 6. 2012
- 2. Landolt, Dieter, Corrosion and surface chemistry of metals -- 2007
- 3. Uhlig, Herbert, Corrosion and corrosion control -4th edn, 1984.

REI	LIABILITY ENGINEERING		
Course Code	20MST334	CIE Marks	40
Teaching Hours/Week (L:P:SDA)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	- 03
	Module-1		
Basic Probability Theory Basic concepts, F Distribution functions, Bernoulli's trials, B binomial distribution – Examples.	Rules for combining Probabilities inomial distribution, Expected v	s of events, Failure Density alue and standard deviatio	y and n for
	Module-2		
Failure Mode and Effect Analysis (FMEA)	Basic Principles and General Fu	undamentals of FMEA Me	thodolog
	Module-3		
Design of Experiments Analysis of Variand	ce Technique-Strategy of Experi	mental Design.	
	Module-4		
Liability- Prevention. Degree of Novelty of Solution Finding Methods- Conventional M Combining Solutions- Examples.	f a Product, Product Life Cycle, Methods, Intuitive Methods, Disc	Company Goals and Their ursive Methods, Methods	Effect. for
	Module-5		
Structures- Interdisciplinary Cooperation, I	Leadership and Team Behaviour.		
Course outcomes:			
At the end of the course the student will be	able to:		
 Understand major concepts of reli 	ability prediction.		
Analyze statistical experiments lease	ading to reliability modeling.		
 Identify reliability testing componing 	ients.		
 Apply reliability theory to assess 	nent of reliability in engineering	design.	
• Use control charts to analyze for i	mproving the process quality		
Question paper pattern:			
The SEE question paper will be set for 100	marks and the marks scored wil	1 be proportionately reduce	ed to 60.
• The question paper will have ten f	ull questions carrying equal mar	ks.	
• Each full question is for 20 marks.			
• There will be two full questions (v	with a maximum of four sub ques	stions) from each module.	
• Each full question will have sub q	uestion covering all the topics ur	nder a module.	
• The students will have to answer f	ive full questions, selecting one	full question from each me	odule. 🔳
Textbook/ Textbooks			
1. AN INTRODUCTION TO RELI Ebeling 1 July 2017 McGraw H	ABILITY AND MAINTAINAB	ILITY ENGINEERING b	y Charles
Looming 1 July 2017, the Oldwin			

- 2. Probability, Queuing Theory & Reliability Engineering G. Haribaskaran, Laxmi publications, Second Edition.
- 3. Total Quality Management, D. H. Besterfield, Glen H. Besterfield and M. Besterfield-Sacre, Pearson Publications, Third Edition.
- 4. Probability and Statistics for engineering and Scientists, E. Walpole, H. Myers and L. Myers Pearson Publications, Eighth Edition.
- 5. Reliability in Automotive and Mechanical Engineering, Brend Bretsche Springer Publications.

PROJECT WORK PHASE – 1					
Course Code	20MST34	CIE Marks	100		
Number of contact Hours/Week	2	SEE Marks			
Credits	02	Exam Hours			

- Support independent learning.
- Guide to select and utilize adequate information from varied resources maintaining ethics.
- Guide to organize the work in the appropriate manner and present information (acknowledging the sources) clearly.
- Develop interactive, communication, organisation, time management, and presentation skills.
- Impart flexibility and adaptability.
- Inspire independent and team working.
- Expand intellectual capacity, credibility, judgement, intuition.
- Adhere to punctuality, setting and meeting deadlines.
- Instil responsibilities to oneself and others.
- Train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas.

Project Phase-1 Students in consultation with the guide/s shall carry out literature survey/ visit industries to finalize the topic of the Project. Subsequently, the students shall collect the material required for the selected project, prepare synopsis and narrate the methodology to carry out the project work.

Seminar: Each student, under the guidance of a Faculty, is required to

- Present the seminar on the selected project orally and/or through power point slides.
- Answer the queries and involve in debate/discussion.
- Submit two copies of the typed report with a list of references.

The participants shall take part in discussion to foster friendly and stimulating environment in which the students are motivated to reach high standards and become self-confident.

Course outcomes:

At the end of the course the student will be able to:

- Demonstrate a sound technical knowledge of their selected project topic.
- Undertake problem identification, formulation, and solution.
- Design engineering solutions to complex problems utilising a systems approach.
- Communicate with engineers and the community at large in written an oral forms.
- Demonstrate the knowledge, skills and attitudes of a professional engineer.

Continuous Internal Evaluation

CIE marks for the project report (50 marks), seminar (30 marks) and question and answer (20 marks) shall be awarded (based on the quality of report and presentation skill, participation in the question and answer session by the student) by the committee constituted for the purpose by the Head of the Department. The committee shall consist of three faculty from the department with the senior most acting as the Chairperson.

MINI PROJECT					
Course Code	20MST35	CIE Marks	100		
Number of contact Hours/Week	2	SEE Marks			
Credits	02	Exam Hours/Batch	03		

- To support independent learning and innovative attitude.
- To guide to select and utilize adequate information from varied resources upholding ethics.
- To guide to organize the work in the appropriate manner and present information (acknowledging the sources) clearly.
- To develop interactive, communication, organisation, time management, and presentation skills.
- To impart flexibility and adaptability.
- To inspire independent and team working.
- To expand intellectual capacity, credibility, judgement, intuition.
- To adhere to punctuality, setting and meeting deadlines.
- To instil responsibilities to oneself and others.
- To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas.

Mini-Project: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

Course outcomes:

At the end of the course the student will be able to:

- Present the mini-project and be able to defend it.
- Make links across different areas of knowledge and to generate, develop and evaluate ideas and information so as to apply these skills to the project task.
- Habituated to critical thinking and use problem solving skills.
- Communicate effectively and to present ideas clearly and coherently in both the written and oral forms.
- Work in a team to achieve common goal.
- Learn on their own, reflect on their learning and take appropriate actions to improve it.

CIE procedure for Mini - Project:

The CIE marks awarded for Mini - Project, shall be based on the evaluation of Mini - Project Report, Project Presentation skill and Question and Answer session in the ratio 50:25:25. The marks awarded for Mini - Project report shall be the same for all the batch mates.

Semester End Examination

SEE marks for the mini-project shall be awarded based on the evaluation of Mini-Project Report, Presentation skill and Question and Answer session in the ratio 50:25:25 by the examiners appointed by the University.

INTERNSHIP / PROFESSIONAL PRACTICE					
Course Code	20MSTI36	CIE Marks	40		
Number of contact Hours/Week	2	SEE Marks	60		
Credits	06	Exam Hours	03		

Internship/Professional practice provide students the opportunity of hands-on experience that include personal training, time and stress management, interactive skills, presentations, budgeting, marketing, liability and risk management, paperwork, equipment ordering, maintenance, responding to emergencies etc. The objective are further,

To put theory into practice.

To expand thinking and broaden the knowledge and skills acquired through course work in the field.

To relate to, interact with, and learn from current professionals in the field.

To gain a greater understanding of the duties and responsibilities of a professional.

To understand and adhere to professional standards in the field.

To gain insight to professional communication including meetings, memos, reading, writing, public speaking, research, client interaction, input of ideas, and confidentiality.

To identify personal strengths and weaknesses.

To develop the initiative and motivation to be a self-starter and work independently.

Internship/Professional practice: Students under the guidance of internal guide/s and external guide shall take part in all the activities regularly to acquire as much knowledge as possible without causing any inconvenience at the place of internship.

Seminar: Each student, is required to

- Present the seminar on the internship orally and/or through power point slides.
- Answer the queries and involve in debate/discussion.
- Submit the report duly certified by the external guide.
- The participants shall take part in discussion to foster friendly and stimulating environment in which the students are motivated to reach high standards and become self-confident. ■

Course outcomes:

At the end of the course the student will be able to:

- Gain practical experience within industry in which the internship is done.
- Acquire knowledge of the industry in which the internship is done.
- Apply knowledge and skills learned to classroom work.
- Develop a greater understanding about career options while more clearly defining personal career goals.
- Experience the activities and functions of professionals.
- Develop and refine oral and written communication skills.
- Identify areas for future knowledge and skill development.
- Expand intellectual capacity, credibility, judgment, intuition.
- Acquire the knowledge of administration, marketing, finance and economics.

Continuous Internal Evaluation

CIE marks for the Internship/Professional practice report (20 marks), seminar (10 marks) and question and answer session (10 marks) shall be awarded (based on the quality of report and presentation skill, participation in the question and answer session by the student) by the committee constituted for the purpose by the Head of the Department. The committee shall consist of three faculty from the department with the senior most acting as the Chairperson.

Semester End Examination

SEE marks for the internship report (30 marks), seminar (20 marks) and question and answer session (10 marks) shall be awarded (based on the quality of report and presentation skill, participation in the question and answer session) by the examiners appointed by the University. \blacksquare

PROJECT WORK PHASE -2					
Course Code	20MST41	CIE Marks	40		
Number of contact Hours/Week	4	SEE Marks	60		
Credits	20	Exam Hours	03		

- To support independent learning.
- To guide to select and utilize adequate information from varied resources maintaining ethics.
- To guide to organize the work in the appropriate manner and present information (acknowledging the sources) clearly.
- To develop interactive, communication, organisation, time management, and presentation skills.
- To impart flexibility and adaptability.
- To inspire independent and team working.
- To expand intellectual capacity, credibility, judgement, intuition.
- To adhere to punctuality, setting and meeting deadlines.
- To instil responsibilities to oneself and others.
- To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas.

Project Work Phase - II: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism. ■

Course outcomes:

At the end of the course the student will be able to:

- Present the project and be able to defend it.
- Make links across different areas of knowledge and to generate, develop and evaluate ideas and information so as to apply these skills to the project task.
- Habituated to critical thinking and use problem solving skills
- Communicate effectively and to present ideas clearly and coherently in both the written and oral forms.
- Work in a team to achieve common goal.
- Learn on their own, reflect on their learning and take appropriate actions to improve it. ■

Continuous Internal Evaluation:

Project Report: 20 marks. The basis for awarding the marks shall be the involvement of the student in the project and in the preparation of project report. To be awarded by the internal guide in consultation with external guide if any.

Project Presentation: 10 marks.

The Project Presentation marks of the Project Work Phase -II shall be awarded by the committee constituted for the purpose by the Head of the Department. The committee shall consist of three faculty from the department with the senior most acting as the Chairperson.

Question and Answer: 10 marks.

The student shall be evaluated based on the ability in the Question and Answer session for 10 marks.

Semester End Examination

SEE marks for the project report (30 marks), seminar (20 marks) and question and answer session (10 marks) shall be awarded (based on the quality of report and presentation skill, participation in the question and answer session) by the examiners appointed by the University. \blacksquare

