

Scheme of Teaching and Examinations and Syllabus M.Tech. in Water and Land Management (20WLM)
(Effective from Academic year 2020 - 21)

Scheme of Teaching and Examinations – 2020 - 21 M.Tech in Water and Land Management (20WLM)

Choice Based Credit System (CBCS) and Outcome Based Education(OBE)

I SEMESTER

Sl. No	Course	Course Code	Course Title	Те	Teaching Hours per Week		Examination				Credits
Sl. No	Course	Course Code	Course Title	Theory	Practical	Skill Development Activities (SDA)	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
				03		02	03	40	60	100	4
2	PCC	20 WLM12	Surface Water Hydrology	03		02	03	40	60	100	4
3	PCC	20WLM13	Hydraulic Structures	03		02	03	40	60	100	4
4	PCC	20WLM14	Remote Sensing and Geographic Information System	03		02	03	40	60	100	4
5	PCC	20WLM15	Water Pollution: Control, Treatment and Management	03		02	03	40	60	100	4
6	PCC	20WLML16	Hydro-Soil Engg. Lab		04		03	40	60	100	2
7	PCC	20RMI17	Research Methodology and IPR	02			03	40	60	100	2
		1	TOTAL	17	04	10	21	280	420	700	24

Note: PCC: Professional core.

Skill development activities:

Students and course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills.

The students should interact with industry (small, medium and large), understand their problems or foresee what can be undertaken for study in the form of research/ testing / projects, and for creative and innovative methods to solve the identified problem.

The students shall

- (1) Gain confidence in modelling of systems and algorithms.
- (2) Work on different software/s (tools) to Simulate, analyse and authenticate the output to interpret and conclude. Operate the simulated system under changed parameter conditions to study the system with respect to thermal study, transient and steady state operations, etc.
- (3) Handle advanced instruments to enhance technical talent.
- (4) Involve in case studies and field visits/ field work.
- (5) Accustom with the use of standards/codes etc., to narrow the gap between academia and industry.
- All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc.

Internship: All the students have to undergo mandatory internship of 6 weeks during the vacation of I and II semesters and /or II and III semesters. A University examination shall be conducted during III semester and the prescribed credit shall be counted for the same semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared as fail in internship course and have to complete the same during the subsequent University examination after satisfying the internship requirements.

Note: (i) Four credit courses are designed for 50 hours Teaching – Learning process.

(ii) Three credit courses are designed for 40 hours Teaching – Learning process.

Scheme of Teaching and Examinations – 2020 - 21 M.Tech in Water and Land Management (20WLM)

Choice Based Credit System (CBCS) and Outcome Based Education(OBE)

II SEMESTER

				Teaching Hours /Week		Examination					
Sl. No	Course	Course Code	Course Title	Theory	Practical/ seminar	Skill Development Activities (SDA)	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	PCC	20WLM 21	Watershed: Planning and Management	03		02	03	40	60	100	4
2	PCC	20WLM 22	Groundwater Hydrology	03		02	03	40	60	100	4
3	PCC	20WLM23	Solid Waste Engineering & Management	03		02	03	40	60	100	4
4	PEC	20WLM24X	Professional elective 1	04			03	40	60	100	4
5	PEC	20WLM25X	Professional elective 2	04			03	40	60	100	4
6	PCC	20WLML26	Geospatial Technology Laboratory		04		03	40	60	100	2
7	PCC	20WLM27	Technical Seminar		02			100		100	2
	TOTAL			17	06	06	18	340	360	700	24

Note: PCC: Professional core, PEC: Professional Elective.

Pro	fessional Elective 1	Professional Elective 2			
Course Code under 20XXX24X	Course title	Course Code under 20XXX25X	Course title		
20WLM241	Advanced Remote Sensing	20WLM251	Irrigation Technology & Irrigation Water Management		
20WLM242	Urban Flood: Planning and Management	20WLM252	Wastewater Reclamation and reuse		
18WLM243	Water Quality Analysis and Modeling	20WLM253	Ground Improvement Techniques and Measures		
20WLM244	River morphology	20WLM254	Open channel hydraulics		

Note:

1. Technical Seminar: CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide/co-guide, if any, and a senior faculty of the department. Participation in the seminar by all postgraduate students of the same and other semesters of the programme shall be mandatory.

The CIE marks awarded for Technical Seminar, shall be based on the evaluation of Seminar Report, Presentation skill and Question and Answer session in the ratio 50:25:25.

2. Internship: All the students shall have to undergo mandatory internship of 6 weeks during the vacation of I and II semesters and /or II and III semesters. A University examination shall be conducted during III semester and the prescribed credit shall be counted in the same semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared as fail in internship course and have to complete the same during the subsequent University examination after satisfying the internship requirements.

Scheme of Teaching and Examinations – 2020 - 21 M.Tech in Water and Land Management (20WLM)

Choice Based Credit System (CBCS) and Outcome Based Education(OBE)

III SEMESTER

				Teaching Hours /Week			Teaching Hours / Week Examination				
Sl. No	Course	Course Code	Course Title	Theory	Practical/ Mini –Project/ Internship	Skill Development activities (SDA)	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	PCC	20WLM31	Environmental Impact Assessment	03		02	03	40	60	100	4
2	PEC	20WLM32X	Professional elective 3	03			03	40	60	100	3
3	PEC	20WLM33X	Professional elective 4	03			03	40	60	100	3
4	Project	20WLM34	Evaluation of Project phase -1		02			100		100	2
5	PCC	20WLMI35	Mini Project		02			100		100	2
6	Internship	20WLMI36	Internship	(Completed during the intervening vacation of I and II semesters and /or II and III semesters.)		03	40	60	100	6	
		TO	TAL	09	04	02	12	360	240	600	20

Note: PCC: Professional core, PEC: Professional Elective.

P	rofessional elective 3	Professional elective 4			
Course Code under 20XXX32X	Course title	Course Code under 20XXX33X	Course title		
20WLM321	Wetland management	20WLM331	Groundwater Assessment, Development & Management		
20WLM322	Industrial Safety, Health, and Environmental Management	20WLM332	Water Management: Conservation, Harvesting and Artificial Recharge		
20WLM323	Industrial Wastewater Management & Audit	20WLM333	Global Warming and Climate Change		
20WLM324	Weather and Climate Modelling	20XXX334	Environmental Planning and Management		

Note:

1. Project Phase-1:Students in consultation with the guide/co-guide if any, shall pursue literature survey and complete the preliminary requirements of selected Project work. Each student shall prepare relevant introductory project document, and present a seminar.

CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide/co-guide if any, and a senior faculty of the department. The CIE marks awarded for project work phase -1, shall be based on the evaluation of Project Report, Project Presentation skill and Question and Answer session in the ratio 50:25:25.

SEE (University examination) shall be as per the University norms.

2. Internship: Those, who have not pursued /completed the internship shall be declared as fail in internship course and have to complete the same during subsequent University examinations after satisfying the internship requirements. Internship

Scheme of Teaching and Examinations – 2020 - 21 M.Tech in Water and Land Management (20WLM)

Choice Based Credit System (CBCS) and Outcome Based Education(OBE)

IV SEMESTER

				Teaching H	ours /Week		Exan	nination		
Sl. No	Course	Course Code	Course Title	Theory	Practical/ Field work	Duration in hours	CIE Marks	SEE Marks Viva voce	Total Marks	Credits
1	Project	20WLM41	Project work phase -2		04	03	40	60	100	20
			TOTAI	,	04	03	40	60	100	20

Note:

1. Project Phase-2:

CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide/co-guide, if any, and a Senior faculty of the department. The CIE marks awarded for project work phase -2, shall be based on the evaluation of Project Report subjected to plagiarism check, Project Presentation skill and Question and Answer session in the ratio 50:25:25.

SEE shall be at the end of IV semester. Project work evaluation and Viva-Voce examination (SEE), after satisfying the plagiarism check, shall be as per the University norms.

SEE (University examination) shall be as per the University norms.

Department of Civil Engineering

"Jnana Sangama", Belagavi - 590 018

VISION

To be a knowledge centre in Civil Engineering education, research and consultancy field for creating sustainable environment and enhancing quality of life.

MISSION

Develop a specialized professional by imparting quality education and training. Attain international standards in teaching, education, research and consultancy through the following procedure.

- Establishing robust, adaptive curricula
- Promoting interactive teaching practices in mutual learning system
- By creating modern educational tools and techniques
- Enhancing research culture to establish synergy teaching and research
- Exploring the Participation of industrial experts and consultancy personal to connect class room content to practical field requirement
- Pursueing intensification of soft skills and personality development

QUALITY POLICY

To become the key player in nation building through the contribution of technical manpower of rich caliber with its core strength in Teaching and Research and providing service to society by imparting state of art technical education involving industrial and corporate sectors.

PROGRAM: WATER AND LAND MANAGEMENT

VISION

To be a knowledge centre in water and land management education, research and practical field for creating sustainable environment and enhancing quality of life.

MISSION

Develop a specialised professional by imparting quality education and training. Attain international standards in teaching, education, research and consultancy.

PROGRAM EDUCATIONAL OBJECTIVES

The graduating students of the Water and Land Management Program will be able to:

PEO1.	Apply knowledge of basic sciences and engineering to analyze water and Land Management practices for socio-economic development
	Identify the sources of water, Capabilities of different soil and their
PEO2.	characteristics.
PEO3.	Plan and design water and Land Management strategies.
	Analyze complex field situations and provide engineering solutions for land
PEO4.	and water management aspects.
	Communicate effectively, and lead multidisciplinary teams to solve water
PEO5.	related issues with professional ethics.
PEO6.	Provide scientific inputs to decision makers.

PROGRAM OUTCOMES: At the end of the program the student will be able to:

PO1	Analyze hydro meteorological data and components of hydrological cycle
PO2	Assess surface and groundwater resources
PO3	Plan water resources projects for meeting socio-economical and environmental
	needs
PO4	Design and manage water resources systems for optimal utilization
PO5	Manage land and water in the changing climate scenario
PO6	Analyze hydrologic extremes and adopt suitable management practices to minimize
	impacts
PO7	Work and lead in multi disciplinary environment and demonstrate professional and
	social ethics
PO8	Engage in critical thinking and pursue lifelong learning for professional
	advancement

OPTIMIZATION TECHNIQ [As per Choice Base			RCES
Subject Code	20WLM11	IA Marks	40
Number of Teaching Hours/Week	03:00:02	Exam Marks	60
Credits	04	Exam Hours	03
 Course objectives: To understand history & develop To formulate Linear and dynamic To understand different optimization real world problems To find optimized solutions for the total control of th	c programming for tion techniques ava ransportation and a	real world problem ailable for obtaining ssignment problem	g solution
Modu			Teaching
Module -1			Hours
INTRODUCTION Development of optimization technic operation research, methodology of optitechniques, classification of operation roptimization techniques.	mization, applicati	ons of optimization	1
Module -2			
LINEAR PROGRAMMING			10 Hours
Introduction to Linear programming, prosolution by simplex method, Big M and			
Module -3			
TRANSPORTATION PROBLEM			10 Hours
Introduction, mathematical formulation initial basic feasible solution, MODI Modern problem. ASSIGNMENT PROBLEMS Mathematical formulation, assignment a assignment problems.	Method, degenerac	y in transportation	
Module -4			
SIMULATION			10 Hours
Basic principles and concepts - Random Carlo techniques - Model development -		-	
Module -5			
OTHER OPTIMIZATION TECHNIC	TIEC		10 Hours

OTHER OPTIMIZATION TECHNIQUES 10 Hours Dynamic programming- Introduction, Approaches, Application and case

Course outcomes: At the end of the course the student will be able to:

Explain history & development of optimization concepts

studies, Network analysis- CPM & PERT

Formulate Linear and dynamic programming for real world problems

Tanahina

- Apply different optimization techniques available for obtaining solution for real world problems
- Find optimized solutions for transportation and assignment problems
- Apply optimization techniques for solving present problems related to water and land management

Text Books:

- 1. S.D. Sharma: "Operations Research" KedaranathRamnath& Co. Meerut.
- 2. Rao, S.S. "Engineering Optimization", John Wiley & Sons, 1996
- 3. Kanti Swarup, P.K. Gupta & Manmohan "Operations Research" Sultan Chand & Sons, 2014.

Reference Books:

- 1. H.A. Taha: "Operations Research" Macmilan publishing Co.
- 2. Ravindran, D.T., Philips and Solberg, J.J. "Operation Research-Principles and practice", Wiley Pub., 1987.
- 3. Hiller, F.S., and Liberman, G.J. "Introduction to operation Research"-(1992), CBS publication and Distributions, New Delhi.

SURFACE WATER HYDROLOGY								
[As per Choice Based Credit System (CBCS) scheme]								
Subject Code	18WLM12	IA Marks	40					
Number of Teaching Hours/Week	03:00:02	Exam Marks	60					
Credits	04	Exam Hours	03					

Course objectives:

- To Analyze components of hydrologic cycle
- To Predict hydrologic extreme events for hydraulic and hydrologic design
- To Develop forecasting models for operation of hydrologic systems

Madulas

• To understand extent of surface water resources

Modules	Teaching
	Hours
Module -1	
Introduction: Scope and importance of hydrology, Hydrologic cycle, Global	10 Hours
and India's Water resources, Applications of hydrology.	
Watershed Concept: Catchment, Topographic and Ground water divide,	
Description of the catchment, demarking a catchment, stream patterns.	
Location of rain-gauges and optimum number of rain-gauges, Analysis of	
rainfall data, Rainfall mass curve and hyetograph, Intensity-Duration	
analysis, Intensity-Frequency-Duration analysis, Depth-Area-Duration	
analysis, Double mass curve.	
Module -2	
Abstractions from precipitation: Evaporation-Process, Measurement,	10 Hours
Empirical equations and Estimation by Water budget method and Energy	
budget method.	
Evapo-transpiration-AET & PET, Estimation by Penman's equation,	
Reference Crop Evapo-transpiration by Blaney Criddle formula.	
Infiltration-Process, Factor affecting infiltration, Measurement, Horton's	
equation and Philip's equation. Infiltration indices.	

Module -3	
Runoff:-Process, Factors affecting runoff, API, Basin yield, Curve number	10 Hours
method, water budgeting.	
Correlation, Regression analysis-Simple linear and Multiple linear	
regression, Curvilinear regression.	
Classification of models, Model formulation, Lumped parameter conceptual	
models, Physically based models, Model performance testing.	
Module -4	
Hydrograph and its features, Methods of hydrograph separation, Unit	10 Hours
hydrograph and its derivation, Unit hydrographs from complex storms and	
for various durations, S-curve hydrograph and its uses, Synthetic unit	
hydrograph.	
Module -5	
Flood: Design flood and its estimation- Rational method, Frequency analysis	10 Hours
Gumbel's and Log-Pearson's type III distribution, Selection of design return	
period.	
Flood routing- Reservoir routing: Modified Pul's method, Goodrich method,	
Channel routing- Prism and Wedge storage, Muskingum method.	
Flood control: Structural and Non-structural measures.	
Course outcomes. At the end of the course the student will be able to:	

Course outcomes: At the end of the course the student will be able to:

- Analyze components of hydrologic cycle
- Predict hydrologic extreme events for hydraulic and hydrologic design
- Develop forecasting models for operation of hydrologic systems
- Assess surface water resources

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Subramanya K. "Engineering Hydrology", Tata McGraw Hill, 1998
- 2. Jaya Rami Reddy, P. "A text book of Hydrology", Laxmi publications,2009
- 3. Putty, M. R.Y. "Principles of Hydrology", I.K. Int. Publishing House, New Delhi, 2010

Reference Books:

- 1. Linsley R K, Kohler and Paulhus. "Hydrology for Engineers", McGraw Hill, NY, USA,1958.
- 2. Mutreja, K. N. "Applied hydrology", Tata McGraw Hill Pub. Co., New Delhi, India-1986.
- 3. Chow, V.T. "Handbook of Applied hydrology", McGraw Hill, NY, 1964

HYDRAULIC STRUCTURES [As per Choice Based Credit System (CBCS) scheme]			
Subject Code	20WLM13	IA Marks	40
Number of Teaching Hours/Week	03:00:02	Exam Marks	60
Credits	04	Exam Hours	03

Course objectives:

- To explain the factors governing site selection for construction of different hydraulic structures and procedure for report/documentation;
- To estimate forces to be considered for design of hydraulic structures like gravity dam, earth dam, diversion structures, regulators, canals;
- To analyze & design different hydraulic structures like dam, regulator, and canal.

Modules	Teaching Hours
Module -1 Gravity Dam: Factors governing selection of type of dam, Principle stresses, Modes of failure, stability analysis, high/low dam, elementary/ practical profile, gravity & zonal method design.	10 Hours
Module -2	1
Earthen Dam: Types, general principles of design, causes of failure, analysis of seepage through earth dams, stability analysis, control of seepage.	10 Hours
Module -3	
Spillway: Types, design criteria (ogee), energy dissipaters Diversion Structures: Types, causes of failure, Bligh's Theory and Khosla's Theory,	10 Hours
Module -4	
Design of Vertical Drop Weir. Regulators: Functions of cross/head regulator, alignment, Design of Cross Regulators.	10 Hours
Module -5	
Canal System: Canal networks, Kennedy's and Lacey's theory of canal design, Introduction to Canal fall and Canal Escapes.	10 Hours

Course outcomes:

- Judge suitable sites for locating different hydraulic structures;
- Estimate forces to be considered for design of hydraulic structures;
- Analyze & design different hydraulic structures like dam, regulator, and canal.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Modi, P.N. "Irrigation, Water Resources and Water Power Engineering" Standard Book House, New Delhi, 2nd ed, 1990.

2. Garg S.K, Irrigation Engineering and Hydraulic Structures, Khanna Publishers N.D. 2006.

Reference Books:-

- 1. Varshney "Concrete dams"— Oxford & IBH Publications, 1978
- 2. Creager, Justin, Hinds. "Engineering for Dams (Volume-I, II and III)" Wiley India Publications.

REMOTE SENSING & GEOGRAPHICAL INFORMATION SYSTEM [As per Choice Based Credit System (CBCS) scheme]			
Subject Code	20WLM14	IA Marks	40
Number of Teaching Hours/Week	03:00:02	Exam Marks	60
Credits	04	Exam Hours	03

Course objectives: Students will be able to know

- The principles of Remote Sensing and GIS
- To develop spatial database for its various application
- To perform various spatial analysis related to water and land management

Modules		
Module -1	Hours 10 Hours	
1. Remote Sensing:		
Remote Sensing Basic Principles: Introduction, Electromagnetic Remote		
Sensing Process, Physics of Radiant Energy: Nature of Electromagnetic		
Radiation, Electromagnetic Spectrum; Energy Source and its Characteristics,		
Atmospheric Interactions with Electromagnetic Radiation: Atmospheric		
properties, Absorption of Ozone, Atmospheric effects on Spectral Response		
Patterns; Energy interactions with Earth's surface materials: Spectral		
Reflectance Curves; Cossine Law.		
Remote Sensing Platforms and Sensors: Satellite System Parameters, Sensor		
Parameter: Spatial Resolution, Spectral Resolution, Radiometric Resolution;		
Imaging Sensor Systems: Multispectral Imaging Sensor System, Thermal		
Sensing System, Microwave Imaging Systems; Earth Resources Satellites:		
Landsat Satellite Programme, SPOT Satellite, Indian Remote Sensing Satellite		
(IRS); Meteorological Satellites: NOAA Satellite, GOES Satellite.		
Module -2	_	
Visual Image Interpretation: Introduction	10 Hours	
Digital Image Processing: Introduction, Basic Character of Digital Image,		
Preprocessing: Geometric Correction Methods, Radiometric Geometric		
Correction, Atmospheric Geometric Correction; Image Enhancement		
Techniques: Contrast Enhancement; Spatial Filtering Techniques: Low Pass		
Filters, High Pass Filters, Filtering for Edge Enhancement; Image		
Transformations NDVI Transformation, PCA Transformation; Image		
Classification: Supervised Classification, Training Dataset, Unsupervised		
Classification.		

Module -3		
2. Geographical Information System:	10 Hours	
Introduction to GIS: Introduction to GIS History of GIS, Early developments		
in GIS, Applications of GIS, Spatial Data Input and Editing: Primary Data,		
Secondary Data, and Data Editing.		
Introduction: Maps and Map Scale, Map Scale, Type of Maps, Map and Glob		
Geo-referencing and Projection: Understanding Earth, Coordinate System,		
Map Projection, Transformation, Geo-referencing		
Module -4		
Global Positioning System (GPS): Introduction.	10 Hours	
Spatial Database Management Systems: Introduction, Data Storage,		
Database Structure Models, Database Management system, Entity Relationship		
Model, Normalization.		
Data Models and Data Structures: Introduction, GIS Data Model, Vector		
Data Structure, Raster Data structure, Geodatabase and Metadata		
Module -5		
Spatial Analysis: Introduction to spatial analysis, Vector Operations and	10 Hours	
Analysis, Network Analysis, Raster Data Spatial Analysis.		
Interpolation: Introduction to Interpolation, Global Methods of Interpolation,		
Local Methods of Interpolation		
Web GIS: Introduction, Web GIS, OGC & Web Services		

Course outcomes:

On completion of this course, students are able to

- Develop a sound understanding of the principles and function of Remote Sensing & GIS
- Understand various techniques in preparing spatial data.
- Understand various spatial analysis to manage water and land

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. M. Anji Reddy, 'Remote Sensing and Geographical Information Systems' 4th Edition, BS Publications.
- 2. Kang-Tsung Chang, 'Introduction to Geographic Information Systems', McGraw-Hill Book Company.

Reference Books:

- 1. Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D. W., 'Geographic Information Systems and Science', 2nd Edition, John Wiley and Sons.
- 2. Burrough, P. A., and McDonnell, R. A. 'Principles of Geographical Information Systems', Oxford University Press, 2nd Edition.
- 3. Demers, M. N., 'Fundamentals of Geographic Information Systems', John Wiley & Sons, 3rd Edition.

WATER POLLUTION: CONTROL, TREATMENT AND MANAGEMENT [As per Choice Based Credit System (CBCS) scheme]					
Subject Code 20WLM15 IA Marks 40					
Number of Teaching Hours/Week	03:00:02	Exam Marks	60		
Credits	04	Exam Hours	03		

Course objectives: The course is designed to train students:

- To have thorough knowledge of Sampling ,Water Acts, National Water Policy
- Effects of Industrial waste on water and land,
- Sources and estimation of point and non point sources of pollution.
- Geo-environmental Issues and management
- Water law ,Environmental Protection Law, legislation,
- Characterization of industrial Wastewater Pollutants.

Modules	Teaching
	Hours
Module -1	10 Hours
Introduction: Definition of Water Pollution, Cause and Sources and	
Consequences of Water Pollution and Remedial Measures Nature of	
pollutants, Ground water pollution Cause and Sources, Remedial Measures	
and its effect,	
and its circuit,	
Industrial Waste Effects: On Sewage Treatment Plant and Receiving Water	
Bodies, Present Scenario of River and Lake Water Pollution due to Waste	
Waters Discharge in India and Self Purification of Streams. Effluent Standards	
and Stream Standards.	
Module -2	
Wastewater & Monitoring: Existing approaches of control/abatement of	10 Hours
water quality degradation, Concept of Material balance-methods of	
qualifications, wastewater Sampling: Grab, Composite and Integrated Samples.	
Sampling Procedure ,Stages and Preservation. Natural methods of wastewater	
Disposal.	
Monitoring: Definition- Monitoring of stream, river, lake .Types and methods	
of Monitoring, Stages Involved in Monitoring process, Equipments used in	
Monitoring Process. Concept of Continuous pH, Conductivity and Bio-	
monitoring. DO and BOD in streams, Transformation and transport processes,	
Oxygen transfer, Turbulent mixing, Flow augmentation.	
Module -3	

Point and Non-Point Source of Pollution:

10 Hours

Point & Non – Point source pollution, Modelling approaches for Point & non – point sources.

Models used for Surface and Ground Water quality Modelling. – Concept of Modelling, Stages, General Flow chart of Modelling process, types of Models, Application, key points, Limitations.

Module -4

Water laws, legislation & Soil water pollution.

10 Hours

Water laws & legislation — Water Act (1986), National Water Policy (CPCB). Water quality objectives and standards. riparian rights, Groundwater ownership, Environmental Protection Law, Water pollution control acts and, Legislation in India, Control Acts.

Soil pollution, Cause, Sources, Remedial Measures and its effect, , Change in the soil behaviour properties and characteristics of soil with respect to pollutants, Soil-water-contaminant interactions and its implications — Factors effecting retention and transport of contaminants.

Module -5

Sources, Process, Characterization, Treatment And Effects of industrial Wastewater Pollutants:

10 Hours

Industries: Fertilizer, Tannery, Pulp, and Paper Mill, Dairy, Cane Sugar, Textile, Distillery and Brewery, Petrochemical industry wastewater.

Course outcomes:

On completion of this course, students are able to

- Understand Wastewater characterization & Monitoring, Water Acts, Water laws & legislation.
- Evaluate the Impact of industrial waste effects.
- Understand the various sources of pollution and its effects.
- Understand Effluent Standards and Stream Standards, sampling.
- Estimate and impacts of Point and non point sources of pollution.
- Surface and Ground Water quality modeling, Geo-environmental Issues and management
- Characterization of industrial Wastewater Pollutants.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 20 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

- 1. H.S. Peavy, D.R. Rowe, G. Tchobanoglous. Environmental Engineering, Mcgrow-Hill International Edition, 1st Edition, 2013.
- 2. Dr. B.C. Punmia, Arun Kumar Jain, Ashok Kumar Jain. Environmental Engineering

II, Laxmi Publications Pvt Limited, 2005.

Reference Books:

- 1. Metcalf and Eddy, A Text Book of Waste Water Engineering
- 2. Sparks, D.L., "Environmental Soil Chemistry" Academic Press, New York, 2002.
- 3. Alvarez-Benedi J. and Munoz-Carpena, R., "Soil-Water-Solute Process Characterization: An Integrated Approach" CRC Press, New York, 2005.

HYDRO-SOIL ENGINEERING LABORATORY [As per Choice Based Credit System (CBCS) scheme]						
Subject Code 20WLML16 IA Marks 40						
Number of Teaching Hours/Week	00:04:00	Exam Marks	60			
Credits 02 Exam Hours 03						

Course objectives:

- To conduct laboratory studies on water and soil parameters.
- To investigate various physical, chemical and biological parameters of water
- To investigate various material testing for micro irrigation

Modules

Experiment No.1: Estimation of Solids, Acidity, Alkalinity, Determination of pH and Conductivity

Experiment No.2: Hardness, Chlorides and Fluorides

Experiment No.3: Estimation of Phosphates and Sulphates

Experiment No4: Estimation of Residual Chlorine

Experiment No.5: Determination of Available Chlorine in bleaching powder

Experiment No.6: Determination of Dissolved Oxygen

Experiment No.7: Measurement of Mean Emission Rate of Emitting tube

Experiment No.8: Determination of Melt Flow Index

Experiment No.09: Determination of Tensile Strength & Elongation of Lateral

Experiment No.10: Carbon Black Dispersion test. & Carbon black content test.

Experiment No.11: Resistance of emitting tube to hydrostatic pressure at ambient/ elevated temperature.

Experiment No.12: Reversion Test

Experiment No.13: Resistance to Pull outs of Joints between fitting and emitting tube.

Course outcomes: On completion of this laboratory studies students are able to:

• Investigate independently the various physical, chemical and biological parameters of water and soil.

Reference Books:

- 1. Sawyer, C. N., McCarty, P. L., and Perkin, G.F., Chemistry for Environmental Engineering and Science, 5th edition McGraw-Hill Inc., 2002
- 2. B. Kotaiah and Dr. N. Kumara Swamy, Environmental Engineering Laboratory Manual, Charotar Publishing House Pvt. Ltd., 1st Ed., 2007.
- 3. Standard methods for the examination of water and wastewater, 21st Edition, Washington: APHA., 2012
- 4. BIS Code, IS 1278: 1989, IS 13487: 1992, IS 13488: 1992

Conduction of Practical Examination:

- **1.** All laboratory experiments must be included for practical examination.
- **2.** Students are given two experiment to do in the examination.
- **3.** Strictly follow the instructions as printed on the cover page of answer script for breakup of marks
- 4. Experiment 1: Procedure + Conduction + Viva: 08 + 14 +08 (30)
 Experiment 2: Procedure + Conduction + Viva: 08 + 14 +08 (30)
- 5. Change of experiment is allowed only once and Marks for the procedure for the alternate experiment is not given.

Conduction of Practical Examination:

- **1.** All laboratory experiments must be included for practical examination.
- **2.** Students are given two experiment to do in the examination.
- **3.** Strictly follow the instructions as printed on the cover page of answer script for breakup of marks
- **4. Experiment 1**: Procedure + Conduction + Viva: **08** + **14** +**08** (**30**) **Experiment 2**: Procedure + Conduction + Viva: **08** + **14** +**08** (**30**)
- 5. Change of experiment is allowed only once and Marks for the procedure for the alternate experiment is not given.

RESEARCH METHODOLOGY AND IPR				
Course Code	20RMI17	CIE Marks	40	
Number of Teaching Hours/Week (L:P:SDA)	02:00:00	SEE Marks	60	
Credits	02	Exam Hours	03	
Modulo 1				

Module-1

Research Methodology: Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Process, Criteria of Good Research, and Problems Encountered by Researchers in India.

Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration.

Module-2

Reviewing the literature: Place of the literature review in research, Bringing clarity and focus to your research problem, Improving research methodology, Broadening knowledge base in research area, Enabling contextual findings, How to review the literature, searching the existing literature, reviewing the selected literature, Developing a theoretical framework, Developing a conceptual framework, Writing about the literature reviewed.

Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs,

Module-3

Design of Sampling: Introduction, Sample Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs.

Measurement and Scaling: Qualitative and Quantitative Data, Classifications of Measurement Scales, Goodness of Measurement Scales, Sources of Error in Measurement Tools, Scaling, Scale Classification Bases, Scaling Technics, Multidimensional Scaling, Deciding the Scale.

Module-4

Testing of Hypotheses: Hypothesis, Basic Concepts Concerning Testing of Hypotheses, Testing of Hypothesis, Test Statistics and Critical Region, Critical Value and Decision Rule, Procedure for Hypothesis Testing, Hypothesis Testing for Mean, Proportion, Variance, for Difference of Two Mean, for Difference of Two Proportions, for Difference of Two Variances, P-Value approach, Power of Test, Limitations of the Tests of Hypothesis.

Chi-square Test: Test of Difference of more than Two Proportions, Test of Independence of

Attributes, Test of Goodness of Fit, Cautions in Using Chi Square Tests.

Module-5

Interpretation and Report Writing: Meaning of Interpretation, Technique Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports.

Intellectual Property: The Concept, Intellectual Property System in India, Development of TRIPS Complied Regime in India, Patents Act, 1970, Trade Mark Act, 1999, The Designs Act, 2000, The Geographical Indications of Goods (Registration and Protection) Act1999, Copyright Act, 1957, The Protection of Plant Varieties and Farmers' Rights Act, 2001, The Semi-Conductor Integrated Circuits Layout Design Act, 2000, Trade Models, IPR and Biodiversity, The Convention on Biological Diversity (CBD) 1992, Competing Rationales for Protection of IPRs, Leading International Instruments Concerning IPR, World Intellectual Property Organisation (WIPO), WIPO and WTO, Paris Convention for the Protection of Industrial Property, National Treatment, Right of Priority, Common Rules, Patents, Marks, Industrial Designs, Trade Names, Indications of Source, Unfair Competition, Patent Cooperation Treaty (PCT), Advantages of PCT Filing, Berne Convention for the Protection of Literary and Artistic Works, Basic Principles, Duration of Protection, Trade Related Aspects of Intellectual Property Rights(TRIPS) Agreement, Covered under TRIPS Agreement, Features of the Agreement, Protection of Intellectual Property under TRIPS, Copyright and Related Rights, Trademarks, Geographical indications, Industrial Designs, Patents, Patentable Subject Matter, Rights Conferred, Exceptions, Term of protection, Conditions on Patent Applicants, Process Patents, Other Use without Authorization of the Right Holder, Layout-Designs of Integrated Protection of Undisclosed Information, Enforcement of Intellectual Property Rights, UNSECO.

Course outcomes:

At the end of the course the student will be able to:

- Discuss research methodology and the technique of defining a research problem
- Explain the functions of the literature review in research, carrying out a literature search, developing theoretical and conceptual frameworks and writing a review.
- Explain various research designs, sampling designs, measurement and scaling techniques and also different methods of data collections.
- Explain several parametric tests of hypotheses, Chi-square test, art of interpretation and writing research reports Discuss various forms of the intellectual property its relevance and business impact

Question paper pattern:

- The question paper will have ten questions.
- Each full question is for 20 marks.
- There will be 2full questions (with a maximum of four sub questions in one full question) from each module.
- Each full question with sub questions will cover the contents under a module.

Textbooks

- (1) Research Methodology: Methods and Techniques, C.R. Kothari, Gaurav Garg, New Age International, 4th Edition, 2018.
- (2) Research Methodology a step-by-step guide for beginners. (For the topic Reviewing the literature under module 2), RanjitKumar,SAGE Publications,3rd Edition, 2011.
- (3) Study Material (For the topic Intellectual Property under module 5), Professional Programme Intellectual Property Rights, Law and Practice, The Institute of Company Secretaries of India, Statutory Body Under an Act of Parliament, September 2013.

Reference Books

- (1) Research Methods: the concise knowledge base, Trochim, Atomic Dog Publishing, 2005.
- (2) Conducting Research Literature Reviews: From the Internet to Paper, Fink A, Sage Publications, 2009.

SECOND SEMESTER

WATERSHED: PLANNING	G AND MANAG	EMENT	
[As per Choice Based Credi	t System (CBCS)	scheme]	
Subject Code	18WLM21	IA Marks	40
Number of Teaching Hours/Week	03:00:02	Exam Marks	60
Credits	04	Exam Hours	03
Course objectives:	·	•	
 To understand causes and extent of soil 	erosion		
 To study various possible soil conservati 	on measures onn a	a watershed	
 To know various water harvesting and gr 			
 To understand the watershed cahracterist 	tics	_	
Modules			Teaching
			Hours
Module -1			10 Hours
Watershed concepts: Watershed-Topographic		· ·	
Stream patterns, Soil erosion- Problems, Ty	-		
Watershed approach, Watershed Management,		_	
operations, Watershed characteristics, Deterior		· ·	
delineation, Prioritizing watersheds, Coding		-	
analysis of watershed-Linear, Areal and Rel	ief aspects, Char	inel networks,	
Hypsometric analysis.			
Module -2			40.77
Sediment transport: Sediment-Sources, Mechanics		-	10 Hours
affecting sediment yield, Types of sediment lo			
suspended sediment load. Estimation of bed lo			
suspended load, Selection of sediment sampling Location of sediment observation post, Collection			
estimation by USLE, Modified USLE, Revised		-	
estimation by OSLE, Mounted OSLE, Revised	USLE and other in	ienious.	

Soil and water: Soil composition, Soil profile and texture, Significance of soil texture for soil conservation, Infiltration, Soil moisture, Ground water, Soil conditions for plant growth, Essential food elements required for plant growth. **Module -3**

Land use capability classification: Soil survey, Mapping unit, Purpose of land capability classification, Soil and land use capability-classification, Capability, Limitation; Capability unit; Land capability sub classes, Land capability rating table, Identification of classes in the field, Land use capability classification, Recommended land use and Soil conservation practices for all capability

Erosion control measures in agriculture land: Importance, Contour bunding, Drainage of excessive water, Graded bunding, Bench Terracing, Land leveling and grading, grassed waterways.

Module -4

Water conservation and harvesting: Introduction, Water conservation methods for crop land, Treatment of catchments, small storage structures- Water harvesting/silt retention structures, Gully control structures, Small earth dams, spillways, Small weirs, Sand dams, Drought farm pond, Nala-bunding, Off-

10 Hours

10 Hours

stream storage, Developing ground water- Recharge and Extraction, Water harvesting for trees and shrubs.

Agronomical measures in soil and water conservation: Land use and Conservation agronomy, Grassland Management, Agro-forestry, Horticulture. Erosion control measures in Non-agricultural lands: General- Soil conservation on waste lands, Contour and Staggered trenching, Gully control structures, Sediment retention structure, Retaining walls, Gully and Ravine reclamation.

Module -5

Watershed Management: Introduction, Watershed characteristics, Causes and Consequences of watershed deterioration, Objectives, People's participation-Definition, Why to pay incentives, Mobilization of participation, People's organization, Conservation farming, Watershed management plan-General identification of watershed problems, Objectives and Priorities, Socio-economic survey, Watershed map and Preparation of format for watershed management plan.

10 Hours

Course outcomes: At the end of the program the student will be able to:

- Identify causes of soil erosion
- Plan and design soil conservation measures in a watershed
- Plan and design water harvesting and groundwater recharge structures
- Can be able to identify suitable watershed practices based on objectives.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Tideman, E. M., "Watershed Management", Omega Scientific Publishers, New Delhi.2002
- 2. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 2003.
- 3. J. V. S Murthy, Watershed Management, New Age International Publishers, 1998.

Reference Books:

- 1. Heathcote, I. W., "Integrated Watershed Management" Springer.
- 2. Strahler, A. H., "Modern physical geography", John Wiley & Sons, 1991.
- 3. V.V. N. Murthy, Land and Water Management, Kalyani Publishers, 1994.

GROUND WATER HYDROLOGY

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	20WLM22	IA Marks	40
Number of Teaching Hours/Week	03:00:02	Exam Marks	60
Credits	04	Exam Hours	03

- To Introduce groundwater hydrology
- To understand Groundwater Flow in Aquifers
- To Model Groundwater Flow in Aquifers
- To know Geophysical Methods in Groundwater Exploration

To know Geophysical Methods in Groundwater Exploration Modules	Teaching
2.20 (3.414)	Hours
Module -1	
General Water Balance, Regional Ground Water Balance, Distribution of	
Subsurface Water, Different Types of Aquifers, Heterogeneity and	10 Hours
Anisotropy, Occurrence of Ground Water in Hydro Geological Formations,	
Structure and Types of Wells. –Problems on estimation of basic parameters.	
Module -2	
Governing Equation of Groundwater Flow in Aquifers. Derivation of General	10 Hours
Differential Equations for Ground Water Flow, Regional Ground Water	
Problems, Governing Equations for Transient Flow Conditions.	
Module -3	
Models for Ground Water Analysis: Introduction, Major Applications of	10 Hours
Groundwater Models, Numerical Modelling of Groundwater Systems,	
Groundwater Modelling by the Finite Difference (FD). –Problems.	
Pollution of Groundwater: Hydrodynamic Dispersion of Pollutants in	
Groundwater Environment (Advection dispersion, Molecular diffusion)	
Optimization models for management of groundwater quantity and quality.	
Module -4	1
Well Hydraulics: Analysis of Steady Radial Flow Towards a Well in a	10 Hours
confined Aquifer, Dupuit Forcheimmer (DF) Theory of free Surface Flow For	
Steady Flow in Unconfined Aquifers, Analysis of Steady Radial Flow in	
Laterlly Stratified Phreatic Aquifers. Problems on well Hydraulics.	
Module -5	I
Artificial Recharge: Spreading methods, Induced-recharge method, Recharge-	10 Hours
well method, Subsurface dams, Wastewater discharge, Recharge by urban	
storm runoff, Case history.	
Geophysical Methods in Groundwater Exploration, Introduction, Electrical	
Resistivity Method, Analytical Derivation for Resistivity in Vertical Electrical	
Sounding, Seismic Retraction Method, Determination of Aquifer Thickness,	
Geologic and Hydrologic methods, Hydrogeologic well logging, Tracer	
techniques.	

Course outcomes: On completion of this course, students are able to

- Apply the governing equation of groundwater flow for different cases
- Carryout physical investigation for groundwater resource
- Apply various techniques for assessment, development and management of groundwater.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books

1. A. K. Rastogi., Numerical Groundwater Hydrology, Penram International Publishing (India) Pvt.Ltd.2007.

Reference Books:

- 1. Todd D.K. & Mays, L.W., "Ground Water Hydrology", 3 Ed, Wiley.
- 2. Raghunath H.M., "Ground Water", New Age Publishers, 2007.

SOLID WASTE ENGINEERING AND MANAGEMENT [As per Choice Based Credit System (CBCS) scheme]			
Subject Code	20WLM23	IA Marks	40
Number of Teaching Hours/Week	03:00:02	Exam Marks	60
Credits	04	Exam Hours	03

- To provide detailed knowledge and skills in solid waste management.
- To provide detailed knowledge of treatment, disposal and recycling options for solid wastes.
- To provide detailed knowledge of principles of existing and emerging technologies for the treatment of waste and recovery of value from waste.

Modules	Teaching
	Hours
Module -1	10 Hours
Solid Waste- Types, Sources and Engineering Classification,	
Characterization, Generation, On-Site Handling, Storage and Processing,	
Quantification.	
Collection of Solid Waste- Collection Systems, Collection Equipment,	
Collection Route Optimization.	
Module -2	
Transfer and Transport - Transfer Stations, Location of Transfer Stations,	10 Hours
Transfer Means and Methods.	
Processing Techniques- Mechanical Volume Reduction, Thermal Volume	
Reduction, Manual Component Separation.	

Module -3	
Engineering Systems for Resource and Energy Recovery - Materials-	10 Hours
Recovery Systems, Recovery Of Biological Conversion Products, Recovery	
Of Thermal Conversion Products, Recovery of Energy From Conversion	
Products; Materials And Energy Recovery Systems, Design Examples.	
Module -4	
Treatment Methods- Recycle, Reduce and Reuse, Composting,	10 Hours
Incineration, Pyrolysis,	
Disposal Methods - Impacts Of Open Dumping, Site Selection, Sanitary	
Land Filling- Design Criteria, Leachate And Gas Collection Systems,	
Leachate Treatment, Deep-Well Injection.	
Module -5	
Recent Developments in Solid Waste Reuse and Disposal-Power	10 Hours
Generation, Building with Construction Materials And Best Management	
Practices (BMP). Biomedical Waste Management and Treatment, Present	
Scenario of E waste Management, Industrial Solid Waste management.	
Role of Various Organizations in Solid Waste Management- Governmental,	
Non-Governmental, Citizen Forums.	

Course outcomes: On completion of this course, students are able to

- Understand and apply the basic scientific and sustainability principles behind waste management, for solving practical waste management challenges
- Understand the fundamental principles of existing and emerging technologies for the treatment of waste and recovery of value from waste

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 20marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Tchobanoglous G., Theissen H., and Eliassen R., "Solid Waste Engineering Principles and Management Issues", McGraw Hill, New York.
- 2. H.S. Peavy, D.R. Rowe, G. Tchobanoglous. Environmental Engineering, Mcgrow-Hill International Edition, 1st Edition, 2013.

Reference Books:

- 1. Mantel C. L.,(1975), "Solid Waste Management", John Wiley
- 2. Pavoni J.L., "Handbook of Solid Waste Disposal".

ADVANCED REMOTE SENSING			
[As per Choice Based Credit System (CBCS) scheme]			
Subject Code	20WLM241	IA Marks	40
Number of Teaching Hours/Week	04:00:00	Exam Marks	60
Credits	04	Exam Hours	03

- To gain the knowledge of optical and microwave remote sensing
- To become familiar with the basic principles and advantages of thermal and Microwave Remote Sensing.

Microwave Remote Sensing.	unu
Modules	Teaching Hours
Module -1	
Introduction: Definition of terms, Concepts and types of remote sensing;	10 Hours
evolution of remote sensing technology, stages in remote sensing technology,	
spatial data acquisition, interdisciplinary nature and relation with other	
disciplines, applications of remote sensing, advantages of RS over	
conventional methods of survey and inventorying, Overview of RS	
Module -2	
Basic Principles of Remote Sensing: Electromagnetic spectrum: Characteristics of electro-magnetic radiation; Interactions between matter and electro-magnetic radiation; Wavelength regions of electro-magnetic radiation; Types of remote sensing with respect to wavelength regions; active and passive remote sensing, Definition of radiometry; Black body radiation; Reflectance; spectral reflectance of land covers; Spectral characteristics of solar radiation; Radiative transfer equation; energy interaction in the atmosphere; energy interactions with the earth's surface- spectral reflectance curves.	10 Hours
Module -3	
Sensors: Types of sensors- passive sensors and active sensors; imaging systems, photographic sensors, characteristics of optical sensors; Sensor resolution- spectral, spatial, radiometric and temporal; Dispersing element; Spectroscopic filter; Spectrometer; Characteristic of optical detectors; Cameras for remote sensing; Film for remote sensing; non-imaging radiometers, imaging sensors, photograph v/s image, Panchromatic, Multispectral, hyperspectral, stereo images, Optical mechanical line scanner; Pushbroom scanner; Imaging spectrometer; spaceborne imaging sensors, active and passive microwave sensors; Thermal sensors; Atmospheric sensors; Sonar; Laser, radar, hyperspectral sensors. Products from scanner data, Image data characteristics, data selection criteria.	10 Hours
Module -4	
Platforms: Types of platforms- airborne remote sensing, space borne remote sensing; Atmospheric condition and altitude; Attitude of platform; Attitude sensors; Orbital elements of satellite; Orbit of satellite; Satellite positioning systems; satellites for Land, Ocean, and atmospheric studies.	10 Hours

Image Interpretation and Analysis: Fundamentals of satellite image interpretation; Types of imaging, elements of interpretation; Techniques of visual interpretation; Generations of Thematic maps.

Module -5

Digital Image Processing: Digital data manipulation and analysis; image rectification – Radiometric correction, Atmospheric correction, Geometric correction; image enhancement – Spatial feature manipulation and multi-image manipulation; classification techniques – Supervised classification and unsupervised classification.

10 Hours

Advanced Remote Sensing Technologies: Synthetic Aperture Radar; Side Looking Airborne Radar; Hyper spectral Imaging Spectrometer; Lidar; Thermal Imaging System; Advanced Laser Terrain Mapping.

Course outcomes: Upon completion of this subject students should

- have the knowledge of optical and microwave remote sensing for practical applications
- Be able to apply the principles of thermal and Microwave RS to the real time problems.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books

- 1. George Joseph, "Fundamentals of Remote Sensing", Universities Press, 2005
- 2. P. J. Curran, "Physical aspects of Remote Sensing", Longman Group Limited, London.

References Books:

- 1. F. F. Sabins, "Remote Sensing Principles and Interpretation", Waveland Press.
- 2. John R Jensen "Introductory Digital Image Processing: A Remote Sensing Perspective", Pearson Series Geographic Information Science, ISBN- 13: 978-0134058160
- 3. Robert A. Schowengerdt "Remote sensing Models and methods for image processing", Second edition, 1997, Academic Press.

URBAN FLOOD PLANNING & MANAGEMENT [As per Choice Based Credit System (CBCS) scheme]			
Subject Code	20WLM242	IA Marks	40
Number of Teaching Hours/Week	04:00:00	Exam Marks	60
Credits	04	Exam Hours	03

- To explain the urban flooding-its types and characteristics, influence of urban density on floods
- To understand the key uncertainties of climate and expected consequences of climate change
- To explain the types of flood damages, loss of life estimation and to explain impacts of land use change on runoff
- To elaborate the concept of Resilience, Vulnerability, Robustness & Sustainability of flood response
- To analyze and design the SUDS systems and FFWRS
- To acquire deeper knowledge of disaster mitigation and management

To acquire deeper knowledge of disaster mitigation and management	
Modules	Teaching Hours
Module -1 Introduction: The influence of climate, causes of flooding, types of flooding, fluvial/pluvial flooding, principles of landuse planning	10 Hours
Climate Change: Key uncertainties and Robust Findings: A review of the past, signs of change, Expected consequences.	
Module -2	
Hydrology of cities: Urban hydrological cycle, Land use & runoff, Urban flood risk assessment, Tangible & intangible damages, Loss of life estimation in flood risk assessment, flood risk mapping	10 Hours
Module -3	
Responding to Flood Risk: Responses, Resilience, Vulnerability, Robustness & Sustainability, SPR Model, Confronting flood management with land use planning, Building types, infrastructure & public open spaces	10 Hours
Module -4	T
 Urban drainage systems: A historical perspective, Major & Minor flows, SUDS/LIDS, Practices in water sensitive urban design Enhancing coping & recover capacity: Flood forecasting warning and response, Emergency Planning, Management & Evacuation 	10 Hours
Module -5	
Disaster mitigation & Management: Modes of disaster management, primary & secondary data, EIA of flood management structures, traffic management during floods, socio-economic studies, interdepartmental cooperation, Regional & global disaster mitigation measurement.	10 Hours
Course outcomes: At the end of the course student will be able to:	I
• Understand the urban flooding-its types and characteristics, influence	of

- urban density and climate change on urban floods
- Explain the types of flood damages, loss of life estimation and to explain impacts of land use change on runoff
- Analyze and design the SUDS systems and FFWRS

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Chris Zevenbergen, Adraian Cashman, Erik Pasche and Richard Ashely. "Urban Flood Management", CRC Press-2010 Edition
- 2. Richard Ashley, Stephen Garvin, Erik Pasche, Andreas Vassilopoulos, Chris Zevenbergen. "Advances in Urban Flood Management" CRC Press-2007 Edition.

Reference Books:

- 1. Wheater, H. S., Mcintyre, N., Jackson, B. M., Marshall, M. R., Ballard, C., Bulygina, N. S., Reynolds, B. and Frogbrook, Z. "Multiscale Impacts of Land Management on Flooding", Wiley-Blackwell, Oxford, UK, (2010).
- 2. Arun Kumar. "Handbook of Flood Management: Flood Risk Simulation, Warning, Assessment and Mitigation", SBS Publisher, India, Vol. 1 2009.

WATER QUALITY ANALYSIS AND MODELLING			
[As per Choice Based Credit System (CBCS) scheme]			
Subject Code	20WLM243	IA Marks	40
Number of Teaching Hours/Week	04:00:00	Exam Marks	60
Credits	04	Exam Hours	03

- To know the process of pollution contaminant mechanism
- To know the water quality modeling Techniques
- To know water quality management measures

Modules	Teaching Hours
Module -1 Water quality description, various characteristics of water, Water quality criteria and standards. Elements of reaction kinetics, spatial and temporal aspects of contaminant transport, transport mechanism-advection, diffusion and dispersion.	10 Hours
Module -2	
River and streams, convective diffusion equation and its applications, estuaries, estuarine hydraulics, estuarine water quality models. Lakes and reservoirs.	10 Hours

Module -3	
Contaminant transport in unsaturated variable soils, contaminant transports in	10 Hours
ground water advection, dispersion, one dimensional transport with linear	
absorption	
Module -4	
Dual porosity models, numerical models, bio-degradation reaction.	10 Hours
Water quality management, socio-economic aspects of water quality	
management.	
Module -5	
Management alternatives for water quality control, waste load allocation	10 Hours
process. Lake quality management, ground water remediation.	

Course outcomes:

At the end of the course student will able to

- Identify the transport of contamination
- Model the water quality transport
- Take the preventive measures for water quality contamination.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Robert V. Thomann and John A. Mueller, Principles of surface water quality modelling and control. Harper & Row, 1987, ISBN 060466774, 9780060466770
- 2. Steven C. Chapra, "Surface water quality modelling". McGraw-Hill, 1997. ISBN: 0071152423, 9780071152426

Reference Books:

- 1. Jerald L. Schnoor, "Environmental Modelling". Publisher: John Wiley and Sons Ltd, 1996, ISBN:9780471124368
- 2. Thomann, "Systems Analysis and Water Quality Management". McGraw-Hill Inc., US, ISBN-13: 978-0070642140
- 3. A. K. Rastogi, "Numerical Groundwater Hydrology", International Publishing (India)
 - 1. Pvt. Ltd. (2007).

SOIL EROSION AND CONSERVATION [As per Choice Based Credit System (CBCS) scheme]			
Subject Code	18WLM	IA Marks	40
Number of Teaching Hours/Week	04:00:00	Exam Marks	60
Credits	04	Exam Hours	03

Course objectives:

- To understand the mechanism of erosion by Water and Wind
- To know the method of estimation and measurement of erosion.
- To know soil conservation problems in Forest, Hilly, Water logged and Wetland areas.
- To study land and water management practices for soil conservation in Semi-arid and Arid zones of India.

And zones of maia.	
Modules	Teaching
	Hours
Module -1	
Soil Erosion: Mechanism, Factors affecting, Effects	
Water Erosion: Mechanism, Types of erosion, Estimation and	10 Hours
measurement of water erosion.	
Module -2	
Hydrology: Hydrologic cycle, Factors affecting runoff, Estimation of runoff	10 Hours
and measurement of runoff.	
Wind Erosion: Mechanism, Avalanching, Dunes, Factors affecting and	
method of estimation	
Module -3	
Water Erosion Control: Principles, Land classification, Mechanical and	10 Hours
Biological methods of water erosion control	
Wind Erosion Control: Principles, Control measures.	
Module -4	
Soil Conservation in Special Problem Areas: Soil conservation in hilly areas,	10 Hours
control of gullies, Rivine reclamation, Waterlogged and wetlands	
Forests in Soil Conservation: Forest area and its distribution, Forest types in	
India, National forest policy, Role of forests in soil conservation, Forest	
protection	
Module -5	
Land and Water Management Practices in Semi-arid Zones: Problems of soil	10 Hours
and water management in semi-arid zones, Management practices.	
Land and Water Management Practices in Arid Zones: Land and Water	
resources, Problems of arid zones of India, Causes of problems and control	
measures.	

Course outcomes: On completion of this course, students are able to

- Estimate the soil erosion
- Apply the appropriate soil erosion control measures in special problem areas.
- Apply suitable Land and Water Management practices in Semi-arid and Arid areas.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each

module.

• Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books

- 2. R.P. Tripathi, and H.P.Singh,. Soil Erosion and Conservation, New Age International (P) Ltd., Publishers.2015
- 3. Singh,G. Venkataramanan, C. And Sastry G. (1981). Manual of Soil and Water conservation practices in India. Central Soil and Water Conservation Research and Training Institute, Dehradun. I.C.A.R. Bulletin No. T-13/D-10
- 4. Rama Rao, M.S.V. (1974). Soil conservation in India, I.C.A.R., New Delhi

Reference Books:

- 3. Glenn, O.S., Delmar, D.F., William, J.E., Richard, K. F. Soil and Water Conservation Engineering., John Wiley & Sons (Asia) Pte Ltd, Singapore.
- 4. Kohake, H. And Bertrand, A.R. (1954). Soil conservation, McGraw Hill Book Co.
- 5. Gadkary, D.A. (1966). A manual on souil conservation. Department fo agriculture, Goernment of Maharashtra, Pune, India.
- 6. Sawhney, K. And Daji, J.A. (1961). Soil and Water Conservartion. Hand book of Agriculture, I.C.A.R. Publication, New Delhi.

IRRIGATION TECHNOLOGY AND IRRIGATION WATER MANAGEMENT			
[As per Choice Based Credit System (CBCS) scheme]			
Subject Code	20WLM251	IA Marks	40
Number of Teaching Hours/Week	04:00:00	Exam Marks	60
Credits	04	Exam Hours	03

- To know about advanced techniques of irrigation in India
- To understand soil water movement in the root zone of agricultural crops
- To understand crop water requirement of different crops to fix the duration and frequency for irrigation.
- To Know about water conveyance and reclaimation of land subjected to waterlogging and salinity

Modules	Teaching Hours
Module -1 Introduction: Types & Techniques of Irrigation including advanced techniques, Present situation of irrigation in India Soil-Moisture Irrigation Relationship, Estimating depth and frequency of irrigation.	10 Hours
Module -2	
Soil and Land Management in Agriculture: classification and surveys-land	10 Hours
capability farm development, grading-equipment, land management techniques	
Module -3	
Crop requirements and irrigation scheduling: Major Indian crops times of	10 Hours
sowing and harvesting –critical periods of growth moisture stress, Duty &	

delta of crops, Irrigation scheduling, Consumptive use of Crop- Blanney-	
Criddle, Thornthwait penman, Christiansen methods, Water-use efficiency,	
scope of computerization in irrigation	
Module -4	
Water conveyance Computing the capacity of canals, Losses in water canals,	10 Hours
Distribution of water into the fields through water courses, Lined canals	
Module -5	
Reclaimation of Water Logged and Saline Soils: Glances of water logging-	10 Hours
design of surface and subsurface drains, Saline and alkaline lands reclamation	
and management of Salt affected lands	

Course outcomes: At the end of the course the student will be able to:

- Explain advanced techniques of irrigation in India
- Understand soil water movement in the root zone of agricultural crops
- Fix the duration and frequency for irrigation based on crop water requirement of different crops
- Describe the water conveyance and reclaimation of land subjected to waterlogging and salinity

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Modi. P. N., Irrigation, Water Resources & Water Power Engineering- Standard Publishers, New Delhi
- 2. B. C. Punmia, Pande, Ashok kumar and Arunkumar Jain "Irrigation and water power engineering" Laxmi Publications (P) LTD.
- 3. Chaturvedi. M.C, "Water Resources Systems Planning and Management", Tata McGraw Hill. NY

Reference Books:

- 1. Linsley, R. K. and Frazinini, J. B.,-"Water Resources Engineering"2nd Ed. McGraw Hill, NY
- 2. James L.D and Lee R.R. "Economics of Water Resources Systems Planning" McGraw Hill. NY

WASTEWATER RECLAMATION AND REUSE [As per Choice Based Credit System (CBCS) scheme]			
Subject Code	20WLM252	IA Marks	40
Number of Teaching Hours/Week	04:00:00	Exam Marks	60
Credits	04	Exam Hours	03

- To provide a basic description and understanding of Wastewater Reclamation and Reuse And the principal unit processes used in the treatment of wastewater.
- To understand the scientific basis of each unit process, as well as the conventional approach to their engineering design.
- To provide an understanding of the Reuse Of Wastewater Using Arobic And Anaerobic Reactor.
- To provide an understanding of the Theoretical principles and design of Physical and Biological Treatment Methods.
- To provide an understanding of the Risk Assessment, Legal Aspects, Health Aspects in wastewater Reclamation and Reuse and Advanced Wastewater Treatment.
- To provide an understanding of the Recent Advancement of Wastewater Reclamation and Reuse, Rural wastewater systems.

and Reuse, Rural wastewater systems.	
Modules	Teaching Hours
Module -1	10 Hours
Objectives of wastewater Reclamation, Reuse and Treatment: Sources of	
wastewater, properties and Characteristics of wastewater, General aspects of	
wastewater reclamation and reuse, Reclaimed wastewater Quality, criteria,	
standard, guidelines. Unit Operation for wastewater and Treatment.	
Preliminary, Primary, Secondary Treatment, Biological Treatment and	
Miscellaneous Methods.	
Module -2	1
Reuse Of Wastewater Using Arobic And Anaerobic Reactor. Concept of	10 Hours
reactors used for Wastewater Treatment. Types of Reactor, Classification of	
Reactors, Working Principle, Merits, Demerits, Limitation, Treatment	
Efficiency, Field Application for Reuse of wastewater for various purposes.	
Module -3	
Theoretical principles and design of Physical Treatment Methods	10 Hours
: Screens, equalization basin, grit chamber, primary and secondary settling	
tanks.	
Theoretical principles and design of Biological Treatment Methods:	
Suspended growth system - conventional activated sludge process and its	
modifications. Attached growth system – trickling filter, bio-towers and	
rotating biological contactors. Principles of stabilization ponds.	
Module -4	1 40
Advanced Wastewater Treatment: Need and technologies used. Nitrification	
and De-nitrification Processes, Phosphorous Removal., Ultra-filtration,	
Ammonia Stripping, Wastewater Disinfection.	
Risk Assessment, Legal Aspects, Health Aspects in wastewater Reclamation and Reuse.	

Module -5	
Recent Advancement of Wastewater Reclamation and Reuse : New	10 Hours
polices, Role of Govrmental and Non Governmental Organization,	
Institutional Contribution, Case Studies. Scope of research in wastewater	
Reclamation and Reuse.	
Rural wastewater systems: Septic tanks, two-pit latrines, eco-toilet, soak pits.	

Course outcomes: At the end of the course the student will be able to:

- A process flow sheet. And appropriate treatment methods for municipal and certain industrial effluents.
- How water and wastewater treatment plants operate. And the Simple design equations for water and wastewater treatment plant.
- The chemical and biological prociples behind unit processes used in water and wastewater treatment unit processes. And the concept of a unit operation and a unit process.
- The fundamental scientific processes underlying the design and operation of wastewater treatment plant. And the management of residuals from water and wastewater treatment.
- The methods that are used for the design of a water and wastewater treatment plant.
- The Complete understanding of the Recent Advancement of Wastewater Reclamation and Reuse, Rural wastewater systems.
- The Complete understanding of Wastewater Reclamation and Reuse And the principal unit processes used in the treatment of wastewater.
- The Complete understanding the scientific basis of each unit process, as well as the conventional approach to their engineering design.
- The Complete understanding of the Reuse Of Wastewater Using Arobic And Anaerobic Reactor.
- The Complete understanding of the Theoretical principles and design of Physical and Biological Treatment Methods.
- The Complete understanding of the Risk Assessment, Legal Aspects, Health Aspects in wastewater Reclamation and Reuse and Advanced Wastewater Treatment.
- The Complete understanding of the Recent Advancement of Wastewater Reclamation and Reuse, Rural wastewater systems.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 20 marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Metcalf and Eddy Inc., "Wastewater Engineering Treatment and Reuse", 4th Edition, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 2. Karia G.L., and Christian R.A., "Wastewater Treatment Concepts and Design

- Approach", Prentice Hall of India Pvt. Ltd., New Delhi.
- 3. Ronand L., and Droste, "Theory and Practice of Water and Wastewater Treatment", John Wiley and Sons Inc.

Reference Books:

- 1. Benefield R.D., and Randal C.W., "Biological Process Design for Wastewater Treatment", Prentice Hall, Englewood Chiffs, New Jersey.
- 2. Lee C.C., and Lin S.D., "Handbook of Environmental Engineering Calculations", McGraw Hill, New York.
- 3. "Industrial Safety and Pollution Control Handbook", National Safety Council and Associate (Data) Publishers Pvt. Ltd.
- 4. "Handbook of Wastewater Reclamation and Reuse", 1st Edition, Donald R. Rowe, Isam Mohammed Abdel-Magid

GROUND IMPROVEMENT TECHNIQUE AND MEASURES [As per Choice Based Credit System (CBCS) scheme]			
Subject Code	18WLM253	IA Marks	40
Number of Teaching Hours/Week	04:00:00	Exam Marks	60
Credits	04	Exam Hours	03

- To Know Principles and objectives of ground improvement
- To Study dewatering systems, filtration, drainage and seepage control with geosynthetics, preloading and vertical drains.
- To apply treatment for problematic soils- collapsible and expansive soils
- To study principles, concepts and mechanism of reinforced earth.

Modules	Teaching
	Hours
Module -1	10 Hours
Principles and objectives of ground improvement.	
Mechanical modifications: principles and methods of densification,	
properties of compacted soils, compaction control tests, deep and shallow	
compactions of coarse and fine grained soils – vibro- floatation, compaction	
piles, dynamic compaction, specification for compaction	
Module -2	
Hydraulic modifications : dewatering systems, filtration, drainage and	10 Hours
seepage control with geosynthetics, preloading and vertical drains, electro-	
kinetic dewatering.	
Module -3	
Admixtures of subgrades of pavements; stabilization using industrial	10 Hours
wastes; grouting-modification by intrusion and confinement.	
Stabilization : role of admixtures, methods of chemical stabilization- lime,	
cement, bitumen and special chemicals; mechanisms, uses and limitations.	
Module -4	

Improvement of soft grounds and low lands: treatment for problematic soils- collapsible and expansive soils, nature of problems and	10 Hours
remedial/preventive measures.	
Reinforced earth technique: principles, concepts and mechanism of reinforced earth. Materials, design consideration for reinforced earth structures-retaining walls, embankments, bearing capacity problems and pavements. Reinforced earth construction for control of heaves. Soil nailing, design examples.	
Module -5	
Geosynthetic materials : functions, property characterization, testing methods for geosynthetic materials, geotextiles, geomemberanes, geogrids, geonets and geocells.	10 Hours

Course outcomes: At the end of the course the student will be able to:

- Define Principles and objectives of ground improvement
- Apply dewatering systems, filtration, drainage and seepage control with geosynthetics, preloading and vertical drains.
- Apply treatment for problematic soils- collapsible and expansive soils.
- Define principles, concepts and mechanism of reinforced earth.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Purushotham Raj, Ground Improvement Techniques, Laxmi publications, New Delhi.
- 2. Hausmann, M. R., "Engineering principles of ground modification", McGraw –Hill Pub.Co.Newyork,1990.
- 3. Koener R.M., "Construction and Geotechnical Methods in Foundation Engineering", McGraw Hill Pub. Co., New York, 1985.

- 1. Ingles O.G. and Metcalf J.B., "Soil Stabilization processes and practice", Butterworths, London, 1972.
- 2. Koerner R.M., "Designing with Geosynthetics", Prentice Hall Pub.1994.
- 3. Bell F.G., "Ground Engineer's Reference Book", Butterworths, London, 1987.

OPEN CHANNEL HYDRULICS [As per Choice Based Credit System (CBCS) scheme]			
Subject Code	18WLM	IA Marks	40
Number of Teaching Hours/Week	04:00:00	Exam Marks	60
Credits	04	Exam Hours	03

- To understand Pressure and Velocity distribution across channel section
- To study the critical depth and hydraulic exponents for flow in different channel sections.
- To study the uniform flow through different sections of prismatic channels.
- To understand the water surface profiles under gradually varied flow conditions.
- To understand the energy dissipation in hydraulic jump.

Modules	Teaching Hours
Module -1	110015
Basic Fluid Flow in open channel: Introduction, Classification of open channels, Classification of flow, Velocity distribution, Kinetic energy and Momentum correction factors, Pressure variation in- Still water, a channel with small slope, large slope, Pressure variation in Curvilinear flows. Flows with small water-surface curvature, Equation of continuity, Energy	10 Hours
equation, Momentum equation.	
Module -2 Energy Depth Relationships: Specific energy, Critical depth, Calculation of the critical depth for Rectangular, Triangular, Circular and trapezoidal sections, Section factor, First hydraulic exponent. Transitions-Channel with hump, Transition with a change in width.	10 Hours
Module -3	
Uniform Flow: Introduction, Chezy equation, Darcy-Weisbach friction factor, Mannings formula. Velocity distribution in wide channels and Channels with small aspect ratio, Shear stress distribution, Mannings roughness coefficient, equivalent roughness, Uniform flow computations- computation of normal depth for Rectangular channel (a. Wide Rectangular Channel, b. Rectangular channel with $y_0/B \ge 0.02$), Trapezoidal Channel, Circular channel, Compound sections.	10 Hours
Module -4	
Gradually- Varied Flow: Introduction, Differential equation, Classification of flow profiles, Some features of flow profiles, Control sections. Analysis of flow profile, Transition depth.	10 Hours
Module -5	
Rapidly varied flow-Hydraulic Jump: Introduction, The momentum equation for the jump, Classification of jumps, Characteristics of jumps in a rectangular channel, Use of the jump as an energy dissipater, Location of the jump.	10 Hours

Course outcomes: On completion of this course, students are able to

- Sketch the Pressure and Velocity distribution across various channel sections
- Able to determine critical depth and hydraulic exponents for flow through various channel sections.
- Able to estimate normal depth under uniform flow condition through different prismatic channels sections.
- Able to sketch the water surface profiles under gradually varied flow conditions.
- Estimate the energy dissipation in hydraulic jump.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books

- 1. K. Subramanya, Flow in Open Channels, TATA Mc GRAW HILL Publishing Company Limited, New Delhi.
- 2. Chaudhry, M.H., Open Channel Flow, Prentice-Hall, Englewood Cliffs, New Jersy, USA, 1993.
- 3. K.G. Ranga Raju, Flow through open channels, TATA Mc GRAW HILL Publishing Company Limited, New Delhi

- 1. Chow, V.T., "Open Channel Hydraulics", Mc Graw-Hill, New York, USA,1959.
- 2. Henderson, F.M., Open Channel Flow, Mcmillan, New York, 1966.
- 3. Rouse, H., Engineering Hydraulics, John Wiley, New York, 1950.
- 4. French, R.H., Open channel hydraulics, Mc Graw Hill Book Co., New York, 1985

GEOSPATIAL TECHNOLOGY LABORATORY			
[As per Choice Based Credit System (CBCS) scheme]			
Subject Code	20 WLM L26	IA Marks	40
Number of Teaching Hours/Week	00:04:00	Exam Marks	60
Credits	02	Exam Hours	03

- To be able prepare and analysis of spatial data.
- To be able use hydrological simulation models.

Topics	Teaching Hours
GIS Application	
1. Introduction to QGIS	42 Hours
2. Map registration/ Geo-referencing	
3. Digitization	
4. Map projection	
5. ER Diagram	
6. Design of Geo-database	
7. Interpolation and Buffering	
8. Image Classification-Supervised	
9. Image Classification- UnSupervised	
10. Watershed Delineation	
11. Geophysical investigation	

Course outcomes: On completion of this laboratory studies students are able

- To Prepare and analysis the spatial data for management of water and land resources.
- To use simulation model to generate information on hydrological responses of the study area.

Conduction of Practical Examination:

- 1. All laboratory experiments must be included for practical examination.
- 2. Students are allowed to pick one experiment from each part and execute both.
- 3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks
- **4. Experiment 1**: Procedure + Conduction + Viva: **08** + **14** +**08** (**30**) **Experiment 2**: Procedure + Conduction + Viva: **08** + **14** +**08** (**30**)
- 5. Change of experiment is allowed only once and Marks for the procedure for the alternate experiment is not given.

THIRD SEMESTER

ENVIRONMENTAL IMPACT ASSESSMENT [As per Choice Based Credit System (CBCS) scheme]			
Subject Code	20WLM31	IA Marks	40
Number of Teaching Hours/Week	03:00:02	Exam Marks	60
Credits	04	Exam Hours	03

- To know about objectives and scope of EIA
- To understand various Methodologies/Techniques of EIA-checklist
- To Assess and Predict Impacts of ecological attributes
- To study various mitigation measures

Modules	Teaching Hours
Module -1	10 Hours
Introduction to EIA: Introduction to EIA, Development Activity and	10 110 111
Ecological Factor, Need for EIA Studies, Step-by-step procedures for	
conducting EIA, EIS, FONSI, Limitations of EIA, Environmental Setting,	
Objectives and Scope, Contents of EIA, Transnational effects of projects,	
Problems of EIA in developing countries	
Module -2	
EIA Methodologies:, Methodologies/Techniques of EIA-checklist, matrix,	10 Hours
network analysis, environmental index, overlay, simulation method and cost	
benefit analysis technique.	
Module -3	
Assessment and Prediction: Assessment and Prediction of Impacts of	10 Hours
ecological attributes and mitigation measures - Air, Surface-Water, Noise,	
Soil and Groundwater, Biological Environment	
Module -4	
Assessment and Prediction Contd: Assessment and Prediction of Impacts	10 Hours
of ecological attributes and mitigation measures - Cultural and Socio-	
economic Environment, Rapid and Comprehensive EIA, EIA Regulations in	
India.	
Public Participation: Advantages, Limitations, Role of Public Participation	
in EIA	
Module -5	
Case Studies: EIA for Water resource developmental projects, Highway	10 Hours
projects, Nuclear-Power plant projects, Mining project (Coal, Iron ore),	
Thermal power plant project, Pharmaceutical industries, Textile industries.	
Course outcomes: At the end of the course the student will be able to:	
 know about objectives and scope of EIA 	

- understand various Methodologies/Techniques of EIA-checklist
- Assess and Predict Impacts of ecological attributes
- Implement various mitigation measures

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. L. W. Canter, Environmental Impact Assessment, 2nd Ed., McGraw-Hill, 1996
- 2. Y. Anjaneyulu, ValliManickam. "Environmental Impact Assessment Methodologies", CRC Press, 2011

Reference Books:-

- 1. Jain R.K. Urban L.V. and Stacey G.S. "Environmental Impact Analysis: A New Dimension in Decision Making", 2nd Ed., Van Nostrand Reinhold Co. New York. 1981.
- 2. R. Therivel, John Glasson, Andrew Chadwick, Introduction to Environmental Impact Assessment (Natural and Built Environment), Routledge, 2005

WETLAND MANAGEMENT [As per Choice Based Credit System (CBCS) scheme]			
Subject Code	20 WLM321	IA Marks	40
Number of Teaching Hours/Week	03	Exam Marks	60
Credits	03	Exam Hours	03

- To understand history and definitions of Wetlands
- To know about wetland classification and delineation
- To have knowledge of major wetland indicators i.e. Hydrology, Hydric soil and Hydrophytes
- To understand different techniques of wetland conservation, restoration and creation

Modules	Teaching
	Hours
Module -1	08 Hours
Introduction: History, definition of wetlands, Wetland indicators, Wetland	
Laws, National wetland inventory, Status and trends of wetlands, The	
Ramsar Convention.	
Module -2	
Wetland Classifications: Cowardin's and Hydro geomorphologic wetland	08 Hours
classification system. Types and Classification of wetlands (based on	
Source): Precipitation, surface water and groundwater. Wetland delineation-	
Technical guidelines, Characteristics and indictors, Methods-preliminary	
data gathering and synthesis, Selection of methods.	

Module -3

Wetland Indicators: Wetland Hydrology-Hydrologic cycle, Criteria and field indicators, Kinds of hydrological data.. Wetland recharge and discharge, wetland water budget and balance. Wetland Characteristics, Indicator guidelines, field indicators of Hydric soils, Test Hydric soils. Wetland vegetation/ hydrophytes: indicators of Characteristics, indicator guidelines, influencing factors, classification, Functions and values.

08 Hours

Module -4

Wetland conservation and Development: Wetland ecosystems and its environmental significance, Factors affecting wetland habitats. Wetland management-Definition and classification, Wetland values and functions, Wetland degradation and loss, Conservation of wetlands, Wetland management principles. Identifying major problems and Setting objectives and priorities, Management of wetland habitats for ecological processes and wildlife.

08 Hours

Module -5

Wetland Assessment and Monitoring: Natural and constructed wetlands, Managing wetlands for multifunctional benefits, the role of landscape architects in wetlands. Floating Islands-An Alternative to Urban Wetlands and case studies.

08 Hours

Course outcomes: At the end of the course the student will be able to:

- Explain a history of wetlands and define a Wetland
- Delineate wetlands based on different classifications
- Identify major wetland indicators i.e. Hydrology, Hydric soil and Hydrophytes
- Apply different techniques for wetland conservation, restoration and creation

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. William J. Mitsch, James G. Gosselink, "Wetlands", Published by John Wiley and sons, Inc., Hoboken, New Jersy, Canada
- 2. Falconer, R. A and Goodwin, P (Ed), "Wetland Management", 1994, Thomas Telford, London.

References:

- 1. Bruce E. Hammer., "Constructed Wetlands for Wastewater Treatment", 1989, CRC-Press; I Ed.
- 2. Verhoeven, J.T.A., Beltman, B., Bobbink, R., Whigham, D.F. (Eds.). "Wetlands and natural resource management", Springer-Verlag Berlin Heidelberg, 2006.

INDUSTRIAL SAFETY, HEALTH, AND ENVIRONMENTAL MANAGEMENT			
[As per Choice Based Credit System (CBCS) scheme]			
Subject Code	20WLM322	IA Marks	40
Number of Teaching Hours/Week	03:00:00	Exam Marks	60
Credits	03	Exam Hours	03

Course objectives: The course is designed to train students:

- To have through knowledge about occupational health, industrial hygiene, accidental prevention techniques
- To make the student aware about safety auditing and management systems, pollution prevention techniques etc.
- To Learn about risk assessment and management.

Fire and other Hazards

repairing, hydraulic and nondestructive testing.

 To identify risks, link to individual behaviors, evaluate precautions and preparations, identify correct processes and procedures, identify critical points, & also improve decision making.

decision making.	ove
Modules	Teaching Hours
Module -1 Occupational Safety and Health Management :	08 Hours
Introduction: Occupational Safety and Health Act, Occupational Safety and	
Health Administration, Right to know Laws.	
Indian Acts – Labour Act, Factories Act, OSHA	
Occupational Health Hazards, Promoting Safety, Safety and Health training,	
Stress and Safety, Health and Safety Considerations, Personal Protective	
Equipment	
Module -2 Radiation and Industrial Hazards	
	08 Hours
Radiation -Types and effects of radiation on human body, Measurement and	
detection of radiation intensity. Effects of radiation on human body,	
Measurement – disposal of radioactive waste, Control of radiation	
Industrial noise -Sources, and its control, Effects of noise on the auditory	
system and health, Measurement of noise,	
Different air pollutants in industries , Effect of different gases and particulate	
matter, acid fumes, smoke, fog on human health	
Vibration - effects, measurement and control measures	
Industrial Hygiene.	
Module -3 Electrical, Fire Hazards & safety	
Electrical Hazards	08 Hours
Safe limits of amperages, voltages, distance from lines, etc., Joints and	
connections, Overload and Short circuit protection, Earthing standards and	
earth fault protection, Protection against voltage fluctuations, Effects of shock	
on human body Hazards from Borrowed nutrals, Electrical equipment in	
hazardous atmosphere, Criteria in their selection, installation, maintenance and	
use, Control of hazards due to static electricity,	

General causes and classification of fire, Detection of fire, extinguishing

methods, fire fighting installations with and without water. Machine guards and its types, automation. High pressure hazards, safety, emptying, inspecting,

Module -4 Ergonomics & Accident	
Ergonomics: Introduction, Definition, Objectives, Advantages.	08 Hours
Ergonomics Hazards - Musculoskeletal Disorders and Cumulative Trauma	
Disorders need, Task Analysis, Preventing Ergonomic Hazards, Ergonomics	
Programme.	
Accident – Causation, investigation methods and different models	
Module -5 Occupational Hazard and Control	4
Hazard Analysis , Human Error and Fault Tree Analysis, Emergency Response.	08 Hours
Hazards and their control in different manufacturing and processing industries.	
Importance of Industrial safety, role of safety department, Safety committee	
and Function.	
Health problems in different types of industries –Textile, steel and food	
processing, pharmaceutical, Tannery, Cement, Dairy, Paper and Pulp, canning	
industry. occupational Health and Safety considerations in Wastewater	
Treatment Plants	

Course outcomes:

On completion of this course, students are able to

- Contribute to the development and maintenance of a healthy and safe work environment
- Interpret and apply legislative requirements, industry standards, and best practices in a variety of workplaces
- Apply risk management principles to anticipate, identify, evaluate and control physical, chemical, biological and psychosocial hazards
- Collect, manage, and interpret information and data to identify trends and issues in the workplace
- Design, support, and evaluate health and safety programs and implement procedures using project management principles and processes appropriate to the task
- □Affect/manage change by advancing OH&S principles within management systems, cultures, practices, and priorities.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 20 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. R.K.Jain and Sunil S.Rao , Industrial Safety , Health and Environment Management Systems, Khanna publishers , New Delhi (2006)
- **2.** Slote.L,Handbook of **Occupational Safety and Health**, John Willey and Sons, New York .

- 1. Goetsch D.L., "Occupational Safety and Health for Technologists", Engineers and Managers", Prentice Hall.
- 2. Heinrich H.W., "Industrial Accident Prevention", McGraw Hill Publication, Newyork.
- 3. Colling D.A., "Industrial Safety Management and Technology", Prentice Hall, New Jersey.

INDUSTRIAL WASTEWATER MANAGEMENT AND AUDIT			
[As per Choice Based Credit System (CBCS) scheme]			
Subject Code	20 WLM323	IA Marks	40
Number of Teaching Hours/Week	03:00:00	Exam Marks	60
Credits	03	Exam Hours	03

- To provide an understanding of the mechanisms and processes used to treat waters_that have been contaminated in some way by anthropogenic industrial or commercial activities prior to its release into the environment or its re-use.
- To understand various terms used in industrial wastewater treatment and to acquaint with different steps involved in treatment of industrial wastewater.

Modules	Teaching Hours
Module -1	110018
Effects of Industrial Wastes on sewerage system and sewage treatment	08 Hours
plants and receiving water bodies. Effects of waste additions on physical and	
chemical properties of soil.	
Effluent standards and receiving water quality standards. Different	
aspects and choices of various disposal alternatives.	
Module -2	
Industrial Waste survey- Step by Step Procedure of industrial survey,	08 Hours
Process flow charts, condition of waste stream. Material balance, Sampling	
- Grab, Composite and integrated samples. Continuous monitoring - pH,	
Conductivity, Bio- Monitoring. Sampling Procedure, Stages and	
Preservation.	
Module -3	
Pretreatment of Industrial Wastewater – Volume reduction, Strength	08 Hours
reduction, Neutralization, Equalization and Proportion, Removal of Organic	
and inorganic dissolved solids.	
Wastewater Treatment in specific industries: Sugar, Pulp and paper,	
Cement, Textile, Tannery, Dairy.	
Module -4	
Sources, Process, Characteristics and Treatment system & disposal for	08 Hours
industries: Industries: Fertilizer, Tannery, Pulp, and Paper Mill, Dairy,	
Cane Sugar , Textile, Distillery and Brewery, Petrochemical industry	
wastewater.	
Radio Active Wastes treatment- Low activity and high activity radiation,	
application of radioactive techniques for wastewater treatment. Bio-	
Remediation of contaminated soils	
Module -5	1
Environmental Auditing: Introduction, objectives, Role and necessity,	08 Hours

stages involved, Cost of Pollution, Importance of Environmental audit and solutions, Financial and Managerial opportunities.

Course outcomes: After completion of course student will be able to:

- Learn physical/chemical/biological characteristics of and the evaluation technique for various industrial wastewater.
- Understand the theory, engineering application, and design technique for the industrial wastewater treatment unit processes.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Eckenfelder, "Industrial Water pollution Control"- McGraw hill Company, New Delhi American Chemical Society, Washington D.C. USA
- 2. Nemerow N.N., "Liquid Waste of industry theories, Practices and Treatment". Addison Willey New York.
- 3. Mahajan," Pollution control in Process industries". TMH, New Delhi.

- 1. Azad N. S., "Industrial Wastewater Management Hand Book" McGraw Hill book Co., New York.
- 2. Ross R.D. "Industrial Waste Disposal", Reinhold Environmental Series New York.
- 3. Dickinson" Practical Waste Treatment and Disposal Applied Science publication, London.

GROUNDWATER ASSESSMENT, DEVELOPMENT AND MANAGEMENT [As per Choice Based Credit System (CBCS) scheme]			
Subject Code	20WLM331	IA Marks	40
Number of Teaching Hours/Week	03:00:00	Exam Marks	60
Credits	03	Exam Hours	03

- To understand groundwater flow
- To Evaluate aquifer properties
- To Understand groundwater development and management technique
- To apply mathematical model for assessment of groundwater

To apply mathematical model for assessment of groundwater Modules	Teaching
Wiodules	Hours
Module -1	Hours
Zones of Aeration and Saturation: Zone of aeration, Zone of saturation,	08 Hours
Storage efficient of aquifers, Fluctuations of the water table, Fluctuations of the	
piezometric surface, Recharge and discharge areas.	
Ground Water Flow: Properties of water in relation to flow, Head distribution,	
Laminar and turbulent flow, Darcy's law. Formation constants, Flow through	
aquifers.	
Module -2	
Evaluation of Aquifer Properties: Aquifer tests, Confined aquifers,	08 Hours
Semiconfined aquifers, Unconfined and semiunconfined aquifers, Transition	
for artesian to water table conditions, Bounded aquifers, Partially penetrated	
aquifers, Sloping piezometric and phreatic surfaces, Areal methods. Sea Water	
Intrusion: Sea Water Intrusion in Coastal Aquifers, Modelling of Pollutant	
Transport in the Unsaturated Zone. Prevention and Control of Seawater	
Intrusion.	
Module -3	1
Ground Water Recharge, Discharge and Balance: Parameters of Ground-	08 Hours
Water Balance, Estimation of Recharge Components, Nuclear Methods,	
Estimation of Ground Water Discharge, Ground Water Resources Evaluation	
In India, Case History.	
Module -4	•
Ground Water Development and Management: Ground-Water	08 Hours
Development, Water logging, Conjunctive use, Desalination, Modelling	
Techniques in Ground-Water Management, Ground Water Legislation.	
Management of Groundwater: Pollution in Relation to water use, Municipal	
sources and causes, Industrial sources and causes, Agricultural sources and	

causes, Miscellaneous sources And causes, Attenuation of Pollution,	
Monitoring Groundwater Quality	
Module -5	
Groundwater Basin Management and Conjunctive Use: Groundwater Basin	08 Hours
Management, Conjunctive Use, Mathematical modelling of a dual aquifer	
system.	

Course outcomes:

On completion of this course, students are able to

- Assess the different aquifer properties
- Apply mathematical model for assessing groundwater
- Evaluate and apply groundwater management techniques

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. K. R. Karanth, Ground Water Assessment Development and Management, Tata McGraw-Hill Publishing Company Limited, New Delhi.1.

- 1. David Keith Todd, Groundwater Hydrology, Gopsons Paper Ltd., Noida, Second Edition.
- 2. H. M. Raghunath, Ground Water, New Age International (P) Ltd., New Delhi, Third Edition.

WATER MANAGEMENT: CONSERVATION, HARVESTING AND ARTIFIFICIAL RECHARGE

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	20WLM332	IA Marks	40
Number of Teaching Hours/Week	03:00:00	Exam Marks	60
Credits	03	Exam Hours	03

- To understand various kinds of water losses and their methods of estimation
- To know different kinds of conservation measures..
- To understand various methods of water harvesting technologies.
- To study methods of artificial recharges.

Modules	Teaching
MACHINES	Hours
Module -1	
Water Management: Overview, Floods and Droughts, Water Quality	
Management, Fresh Water Management, Wastewater Management, Recycling	10 Hours
and Reuse of Water, Water Conservation, Need of Ensuring Quality and Cost	
Effectiveness of Water Harvesting.	
Hydrologic Cycle: Introduction, Atmospheric Water, Precipitation,	
Surface Water, Infiltration, Groundwater, Evapo-transpiration,	
Recharge.	
Ground Water Occurrence: Introduction, Groundwater Occurrence,	
Sources of Groundwater, Factors Controlling Groundwater, Water	
Bearing Properties of Soil and Rocks. Types of Aquifers, Aquifers	
lithology, Groundwater Flow, Groundwater Exploration, Aquifer	
Performance Test.	
Module -2	
Water Losses: Introduction, Evaporation, Transpiration, Interception,	10 Hours
Depression Storage, Infiltration	
Water Conservation: Introduction, Development of New Supplies, Reducing	
Demand of Water, Evaporation Control, Equipments, Studies of Evaporation	
Control, Conservation of Soil Moisture, Soil Mulches, Influence of Farmyard	
Manure on Soil Moisture.	
Module -3	
Rain Water Harvesting: Introduction, Rain Water Harvesting, Roof Water	10 Hours
Harvesting, Water Harvesting by Ponds, Water Quality Consideration.	
Module -4	
Artificial Recharge Methods: Introduction, Natural Recharge Measurements	10 Hours
in India, Concepts of Artificial Recharge, Methods of Artificial Recharge,	
Theory of Artificial Recharge by Spreading, Check Dam, Percolation Tank,	
Classification of Tanks, Flooding Methods, Indirect Methods.	
Module -5	·
Methods of Artificial Recharge Practiced by People in Drought Prone Area,	10 Hours
Well Clogging Mechanism and their Prevention, Cleaning of Injection Wells.	

Course outcomes: On completion of this course, students are able to

- Estimate the various kinds of water losses
- Apply appropriate water conservation methods.
- Use most suitable water harvesting technology for the area.
- Adopt most suitable artificial recharge method for the situation.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books

- 1. Patel, A.S. and Shah, D.L., (2017) Water Management, New Age International, New Delhi
- 2. Patel, A.S. et al., (2003) Manual of Water Harvesting, GSFC Science Foundation, Vadodara, India.
- 3. Huisman, L. And Olsthoorm, T.N. (1983) Artificial Groundwater Recharge, Pitman Advanced Publishing Program, Boston.

- 1. Hillel, I.S., (1977) Water Renovation and Reuse, Academic Press, New York.
- 2. Jawad, A.S. and Akashi, A. (2000) Wastewater Reclamation and Reuse, New Age International Pvt Ltd., New Delhi. UNDP (1998, 2001), State of the environment, India, United Nation Environmental Program.

GLOBAL WARMING AND CLIMATE CHANGE [As per Choice Based Credit System (CBCS) scheme]			
Subject Code	20WLM333	IA Marks	20
Number of Teaching Hours/Week	03	Exam Marks	80
Credits	03	Exam Hours	03

- Course objectives: To provide an understanding of:

 The factors responsible for climate change

 The biological and sociological consequences of such changes; and
 - The possible engineering, economic, and legal solutions to avoid more extreme perturbations.

Modules	
	Hours
Module -1	
Introduction: Introduction and history of meteorology and	08 Hours
climatology: The atmosphere, Solar energy, Global circulation, ,	
Climatology, Mid-latitude disturbances, The polar regions, Tropical	
weather, Paleoclimates, The global climate system	
Atmospheric composition, mass and structure	
Composition of the atmosphere: Primary gases, Greenhouse gases, Reactive	
gas species, Aerosols, Variations with height, Variations with latitude and	

season, Variations with time	
season, variations with time	
Mass of the atmosphere: Total pressure, Vapor pressure	
Module -2	
Atmospheric composition, mass and structure	08 Hours
The layering of the atmosphere: Troposphere, Stratosphere, Mesosphere, Thermosphere, Exosphere and magnetosphere	
Solar radiation and the global energy budget : Solar radiation : Solar output, Terrestrial infrared radiation and the greenhouse effect, Heat budget of the earth	
Atmospheric moisture budget : The global hydrological cycle, Humidity, Evaporation, Condensation, Precipitation characteristics and measurement	
Module -3	
Numerical models of the general circulation, climate and weather prediction Fundamentals of the GCM, Model simulations: GCMs, Simpler models, Regional models, Data sources for forecasting, Numerical weather prediction: Short- and medium- range forecasting, Nowcasting, Long-range outlooks.	08 Hours
Module -4	
Boundary layer climates	08 Hours
Surface energy budgets, Non-vegetated natural surfaces: Rock and sand,	
Water, Snow and ice	
Vegetated surfaces: Short green crops, Forests	
Urban surfaces: Modification of atmospheric composition, Modification of the	
heat budget, Modification of surface characteristics, Tropical urban climates.	
Module -5	
Climate change: General considerations, Climate forcing, feedback and response: Climate forcing, Climate feedbacks, Climate response, The importance of framework	08 Hours
The climatic record : The geological record, The last glacial cycle and post-glacial conditions, The past 1000 years	
Understanding recent climatic change: Circulation changes, Solar variability, Volcanic activity, Anthropogenic factors	
Projections of temperature change through the twenty-first century:	
Applications of General Circulation Models, The IPCC simulations	
Projected change in other system components : Hydrologic cycle and atmospheric circulation, Global sea level, Snow and ice, Vegetation, Postscrip	
Course outcomes:	
On completion of this course, students are able to:	

- Measure climate factors and how they change
- Understand connections between global warming and human activities
- Identify effects of climate change on biodiversity and ecosystems in different biomes and aquatic systems
- Model possible scenarios for future climate change
- Achieve possible ways to deal with climate change.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Barry R.G., and Chorley R.L., "Atmosphere, Weather and Climate", 4th Edition, ELBS Publication.
- 2. Bolin B., (Ed.), "Carbon Cycle Modelling", John Wiley and Sons Publications.

Reference Books:

- 1. Srivatsava A.K., "Global Warming", APH Publications.
- 2. Wyman R.L., (Ed.), , "Global Climate Change and Life on Earth", Chapman and Hall Publications.
- 3. Yadav, Chander and Bhan, "Global Warming: India's Response and Strategy", RPH Publications.

ENVIRONMENTAL PLANNING AND MANAGEMENT			
[As per Choice Based Credit System (CBCS) scheme]			
Subject Code		IA Marks	40
Number of Teaching Hours/Week	03:00:00	Exam Marks	60
Credits	03	Exam Hours	03

Course objectives:

• This course will enable students to • Understand the management and to apply the skills of the management when they become an entrepreneur

Modules	Teaching Hours
Module -1	
Management Introduction - Meaning - nature and characteristics of	08 Hours
Management, Scope and functional areas of management– Management as a	
science, art or profession - Management & Administration - Roles of	
Management, Levels of Management, Development of Management Thought	
– early management approaches – Modern management approaches Planning	
Nature, importance and purpose of planning process – objectives – Types of	
plans (Meaning only) – Decision making – Importance of planning – steps in	
planning & planning premises – Hierarchy of plans.	

Module -2

Organizing and Staffing Nature and purpose of organization – principles of organization – Types of organization – Departmentation – Committees – Centralization Vs Decentralization of authority and responsibility – Span of control – MBO and MBE (Meaning only) Nature and importance of Staffing – Process of Selection & Recruitment (in brief). Directing & Controlling - Meaning and nature of directing – Leadership styles, Motivation Theories, Communication – Meaning and importance – Coordination, meaning and importance and Techniques of Coordination. Meaning and steps in controlling – Essentials of a sound control system – Methods of establishing control (in brief).

08 Hours

Module -3

Entrepreneurship Meaning of Entrepreneur, Evolution of Concept, Functions of Entrepreneur, Types of Entrepreneur, Entrepreneur – an emerging class. Concept of Entrepreneurship – Evolution of Entrepreneurship, Development of Entrepreneurship, Stages in entrepreneurial process, Role of Entrepreneurs in Economic Development; Entrepreneurship in India; Entrepreneurship – its Barriers.

08 Hours

Module -4

Small Scale Industry Definition; Characteristics; Need and rationale: Objectives, Scope, role of SSI in Economic Development.Advantages of SSI. Steps to start an SSI – Government policy towards SSI, Different Policies of SSI., Government Support on SSI., during 5 year plans. Impact of Liberalization, Privatisation, Globalization on SSI. Effect of WTO / GATT Supporting Agencies of Government for SSI Meaning. Nature of support; Objectives; Functions; Types of Help; Ancillary Industry and Tiny Industry (Definition only).

08 Hours

Module -5

Preparation of Project, Meaning of Project, Project Identification, Project Selection, Project Report, Need and significance of Project, Contents, formulation, Guidelines by Planning Commission for Project Report, Network Analysis, Errors of Project Report, Project Appraisal. Identification of Business Opportunities. Market Feasibility Study: Technical Feasibility Study, Financial Feasibility Study & Social Feasibility Study

08 Hours

Course outcomes:

On completion of this course, students are able to

• Identify, select a suitable Project • Write a Project Report, with formulation and understand the Guidelines by Planning Commission for Project Report. • Become a Entrepreneur

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Principles of Management P.C. Tripathi, P.N. Reddy, Tata McGraw Hill,
- 2. Dynamics of Entrepreneurial Development & Management Vasant Desai, Himalaya Publishing House. • Entrepreneurship Development – Small Business
- 3. Enterprises Poornima M. Charantimath Pearson Education 2006 (2&4). **Reference Books:**
- Management Fundamentals Concepts, Application, Skill Development Robert Lusier – Thomson .
- Entrepreneurship Development SS Khanka S Chand & Co.
- Management Stephen Robbins Pearson Education / PHI 17th Edition, 2003.