Advances in Computer Networks									
Course Code 22VSC13 CIE Marks 50									
Teaching Hours/Week (L:P:SDA)	03:0:02	SEE Marks	50						
Total Hours of Pedagogy	50	Total Marks	100						
Credits	04	Exam Hours	03						

Course Learning objectives:

Learning Process

- Classify the various Advanced internetworking Techniques.
- Survey various wired and wireless networking technologies
- Discover the different Congestion Control methods, quality of service.

Module-1 Module 1:Internetworking: Switching and Bridging, Basic Internetworking, Routing, Software Defined Networks ,Broader Perspective Teaching-Chalk and talk method / PowerPoint Presentation Learning **Process** Module-2 Module 2: Advanced Internetworking, Global Internet, Multicast, Multiprotocol Label Switching, Routing Among Mobile Devices, Broader Perspectiv Chalk and talk method / PowerPoint Presentation Teaching-Learning **Process** Module-3 Module 3: End-to-End Protocols, Simple De multiplexor (UDP), Reliable Byte Stream (TCP), Remote Procedure Call, Transport for Real-Time (RTP), Broader Perspective Chalk and talk method / PowerPoint Presentation Teaching-Learning **Process** Module-4 Module 4: Congestion Control, Issues in Resource Allocation, Queuing Disciplines, TCP Congestion Control, Advanced Congestion Control, Quality of Service, Broader Perspective Chalk and talk method / PowerPoint Presentation Teaching-Learning **Process** Module-5 Module 5: End-to-End Data & Network Security, Presentation Formatting, Multimedia Data, Broader Perspective, Trust and Threats, Cryptographic Building Blocks, Key Pre distribution, Authentication Protocols, Example Systems, **Broader Perspective** Chalk and talk method / PowerPoint Presentation Teaching-

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 20 Marks
- 2. Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Text Books:

1. Larry Peterson and Bruce Davie, Computer Networks - A Systems Approach, Morgan Kaufmann, 6th edition, 2022

Reference books:

- 1. James F. Kurose and Keith W. Ross, Computer Networking A Top-Down Approach, Pearson, 8th edition, 2022
- 2. William Stallings, Data and Computer Communications, Pearson, 5th edition, 2017

Web links and Video Lectures (e-Resources):

• https://www.youtube.com/watch?v=DRhWaTE62oM

Skill Development Activities Suggested

• The students with the help of the course teacher can take up technical —activities which will enhance their skill or the students should interact with industry (small, medium and large), understand their problems or foresee what can be undertaken for study in the form of research/testing/projects, and for creative and innovative methods to solve the identified problem. The prepared report shall be evaluated for CIE marks.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
CO1	Illustrate the working of different internetworking techniques	L2
CO2	Explain the concept of UDP,TCP and RTP in networking	L2
C03	Demonstrate End-to-End Data & Network Security(can be attained through assignment or CIE)	L3
CO4	Evaluate the existing network and improve its quality of service (can be attained through assignment or CIE)	L3

Sl. No.	Description	POs							
1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and computer science and business systems to the solution of complex engineering and societal problems.								
2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering and business problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	PO2							
3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	PO3							
1	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	PO4							
j	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations	PO5							
j	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering and business practices.	PO6							
1	Environment and sustainability: Understand the impact of the professional engineering solutions in business societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	PO7							
3	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering and business practices.	PO8							
)	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	PO9							
0	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	PO10							
.1	Project management and finance: Demonstrate knowledge and understanding of the engineering, business and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	PO11							
2	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	PO12							

Mappi	Mapping of COS and POs											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	X	X										
CO2		X										
CO3			X		X							
CO4			X	X								

ADVANCED ALGORITHMS									
Course Code	22VSC14	CIE Marks	50						
Teaching Hours/Week (L:P:SDA)	2:0:2	SEE Marks	50						
Total Hours of Pedagogy	40	Total Marks	100						
Credits	03	Exam Hours	03						

Course Learning objectives:

- Select advanced / novel algorithm design strategies and techniques.
- Recognize advanced topics in algorithmic and complexity theory.
- Interpret sturdy / open problems in algorithmic or complexity theory by analyzing known approaches and their limitations

Module-1

Analysis Techniques: Growth of Functions: Asymptotic notations; Standard notations and common functions; Recurrences and Solution of Recurrence equations- The substitution method, The recurrence – tree method, The master method; Amortized Analysis: Aggregate, Accounting and Potential Methods.

Teaching-	Chalk and talk method / PowerPoint Presentation
Learning	
Drogogo	

Module-2

Graph Algorithms: Bellman - Ford Algorithm; Single source shortest paths in a DAG; Johnson's Algorithm for sparse graphs; Flow networks and Ford-Fulkerson method; Maximum bipartite matching. Polynomials and the FFT: Representation of polynomials; The DFT and FFT, Elementary number-theoretic notions.

Teaching-	Chalk and talk method / PowerPoint Presentation
Learning Process	

Module-3

Number - Theoretic Algorithms: Elementary notions; GCD; Modular Arithmetic; Solving modular linear equations; The Chinese remainder theorem; Powers of an element; RSA cryptosystem; Primality testing: Integer factorization

	8,8
Teaching-	Chalk and talk method / PowerPoint Presentation
Learning	
Process	

Module-4

String-Matching Algorithms: Naïve string Matching; Rabin - Karp algorithm; String matching with finite automata; Knuth-Morris-Pratt algorithm; Line-segment properties.

Teaching-	Chalk and talk method / PowerPoint Presentation
Learning	
Process	
	Module-5

Probabilistic and Randomized Algorithms: Probabilistic algorithms; Randomizing deterministic algorithms, Monte Carlo and Las Vegas algorithms; Probabilistic numeric algorithms

Teaching-	Chalk and talk method / PowerPoint Presentation
Learning	
Process	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 20 Marks
- 2. Two assignments each of **20 Marks**or**oneSkill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Text Books:

- 1. Introduction to Algorithms T. H Cormen, C E Leiserson, R L Rivest and C Stein PHI 3rd Edition, 2010
- 2. Algorithms Kenneth A. Berman Cengage Learning 2002.

Reference books:

1. Fundamentals of Computer Algorithms Ellis Horowitz, Sartaj Sahni, S.Rajasekharan Universities press 2nd Edition, 2007

Web links and Video Lectures (e-Resources):

- https://www.youtube.com/watch?v=0JUN9aDxVmI
- https://nptel.ac.in/courses/106104019

Skill Development Activities Suggested

• The students with the help of the course teacher can take up technical –activities which will enhance their skill or the students should interact with industry (small, medium and large), understand their problems or foresee what can be undertaken for study in the form of research/testing/projects, and for creative and innovative methods to solve the identified problem. The prepared report shall be evaluated for CIE marks.

Course outcome (Course Skill Set) At the end of the course the student will be able to: **Blooms Level** Description Sl. No. CO1 Explain the key techniques and theory behind the type of random variable L2 and distribution Apply effectively the various algorithms for applications involving CO2 L2 probability and statistics in computing Design and build solutions for a real world problem by applying relevant CO3 L3 distributions(can be attained through assignment or CIE)

Apply a range of appropriate algorithms to example problems(can be

attained through aggignment or CIE)

CO4

L3

Sl. No.	Outcome of this course Description	POs
DI. 110.	Description	103
1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and computer science and business systems to the solution of complex engineering and societal problems.	PO1
2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering and business problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	PO2
3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	PO3
4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	PO4
5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations	PO5
6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering and business practices.	PO6
7	Environment and sustainability: Understand the impact of the professional engineering solutions in business societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	PO7
3	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering and business practices.	PO8
9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	PO9
10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	PO10
11	Project management and finance: Demonstrate knowledge and understanding of the engineering, business and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	PO11
12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	PO12

Mapping of COS and POs												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	X											
CO2		X										
CO3			X		X							
CO4			X	X								

Principles of Artificial Intelligence and Machine Learning										
Course Code	Course Code 22VSC15/22VSA15 CIE Marks 50									
Teaching Hours/Week (L:P:SDA)	2:0:2	SEE Marks	50							
Total Hours of Pedagogy	40	Total Marks	100							
Credits	03	Exam Hours	03							

Course Learning objectives:

- Explain the concept of Artificial Intelligence and its relevance and application to real world problems machine learning and apply them
- Interpret various problem solving paradigms and knowledge representation.
- Select comprehend machine learning techniques for solving problems
- Choose problem solving planning techniques and apply appropriately

Module-1

Introduction to AI, Problem Solving: Production System, State Space search, control strategies, Characteristics of the problem, Exhaustive searches: Depth first iterative deepening, bidirectional search, Heuristic search techniques: General purpose heuristics, branch and bound search, Hill climbing, Beam Search, A* algorithm, Optimal Solution by A* algorithm, Iterative – deepening A*, Constraint Satisfaction

Teaching-	Chalk and talk method / PowerPoint Presentation
Learning	
Process	

Module-2

Problem reduction and Game playing: Problem Reduction, Game Playing, Bounded Look Ahead Strategy, Alpha Beta Pruning

Logic concepts: Propositional Calculus, Propositional logic, Natural deduction system, Predicate Logic: Predicate Calculus, First order predicate calculus, interpretation of Formulae in FOL, Satisfiability and

Teaching-	Chalk and talk method / PowerPoint Presentation
Learning	
Process	
	Modulo-2

Module-3

Advanced problem-solving paradigm: planning, Types of Planning Systems, logic based planning, linear planning, means ends analysis, Non-linear planning strategies, learning plans

Knowledge representation: Approaches, Knowledge representation using Semantic Network, Extended Semantic Networks for Knowledge representation, Use of frames for Knowledge representation

Teaching-	Chalk and talk method / PowerPoint Presentation
Learning	
Process	
	Modulo 4

Module-4

Machine Learning Paradigms: Machine learning system, supervised and unsupervised learning,

	C	C		J 3	, T		1	<i>U</i> ,
Bayesian Net	work, Bayes	' theorem, Indu	uctive, dedu	ctive lear	rning, Clust	ering		
Teaching-	Chalk and tal	k method / Powe	erPoint Presen	ntation				
Learning								
Process								
			Mod	dule-5				
C	M l. :	11		1 !	A	NI1 NI-4	1- (ANINIO, C	1

Support vector Machine, case-based reasoning and learning, Artificial Neural Network (ANNO: Single Layer, Multilayer. RBF, Design issues in ANN, Recurrent Networks

Teaching-	Chalk and talk method / PowerPoint Presentation
Learning	
Process	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 20 Marks
- 2. Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Text Books:

1. Artificial Intelligence: SarojKaushik Cengage Learning 2014 Edition

Reference Books:

1 Artificial Intelligence: Structures, and Strategies for Complex Problem Solving George F Luger Pearson Addison

Wesley 6th Ed, 2008

- 2 Artificial Intelligence E Rich, K Knight, and S B Nair Tata Mc-Graw Hill 3rd Ed, 2009
- 3 Artificial Intelligence: A Modern Approach Stuart Russell and Peter Norvig Prentice Hall 3rd, 2009

Web links and Video Lectures (e-Resources):

- http://www.aaai.org
- http://www.eccai.org
- http://www.ai.mit.edu
- http://www.dfki.de/web/welcome?set_language=en&cl=en

Skill Development Activities Suggested

• The students with the help of the course teacher can take up technical –activities which will enhance their skill or the students should interact with industry (small, medium and large), understand their problems or foresee what can be undertaken for study in the form of research/testing/projects, and for creative and innovative methods to solve the identified problem. The prepared report shall be evaluated for CIE marks.

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

Sl. No.	Description	Blooms Level	
CO1	Apply various problem solving and planning approaches (can be attained through assignment or CIE)	L4	
CO2	Illustrate foundation principles, mathematical tools and paradigms of AI	L2	
CO3	Apply problem solving techniques to solve real world problems(can be attained through assignment or CIE)	L3	
CO4	Develop a good understanding of fundamental principles of machine learning and analyze them	L4	

	Outcome of this course	D.O.					
Sl. No.	Description	POs					
1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and computer science and business systems to the solution of complex engineering and societal problems.						
2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering and business problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	PO2					
3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	PO3					
4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	PO4					
5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations	PO5					
6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering and business practices.	PO6					
7	Environment and sustainability: Understand the impact of the professional engineering solutions in business societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	PO7					
8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering and business practices.	PO8					
9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	PO9					
10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	PO10					
11	Project management and finance: Demonstrate knowledge and understanding of the engineering, business and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	PO11					
12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	PO12					

Mapping of COS and POs												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	X	X		X								X
CO2	X							X				
CO3	X	X	X	X	X							
CO4	X		X	X	X							