Semester- I

ADVA	NCED ENGINEERING MATHEMA	ATICS	
Course Code	MEE101	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	3:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03

Course Learning objectives:

- To have an insight into solving Linear Algebraic Equations and the importance of Eigen values and Eigen vectors in singular value decompositions.
- To develop proficiency in vector spaces and linear transformations
- To enable learning concepts of probability theory and their implication in Electrical and Electrical Engineering

Module-1

Linear Algebra: Solution of Systems of Linear Equations: Direct methods-Partition method, Croute's Triangularisation method. Iterative method- relaxation method. Eigen values and Eigen vectors. Bounds on Eigen Values. Jacobi method & Givens method for symmetric matrices.

Module-2 rectors paces and sub-spaces, definitions column

Vector Space 1: Introduction to vectors paces and sub-spaces, definitions column , Null spaces, spaces illustrative example. Linearly independent and dependent vectors-Basis definition and problems. Linear transformations definitions. Matrix form of linear Transformations-Illustrative examples.

RBT Levels: L1, L2, L3

RBT Levels: L1, L2, L3

Module-3

Vector Space 2: Orthogonal vectors and orthogonal bases. Gram-Schmidt Orthogonalization process. QR decomposition, Least square problems, Singular value decomposition. Applications

RBT Levels:	L1, L2, L3
--------------------	------------

Module-4

Probability distribution functions: Review of basic probability theory. Random variables, Probability distributions: Binomial, Poisson, uniform, and Normal (Gaussian) and Erlangdistributions. Joint probability distribution (discrete and continuous)-Illustrative examples. Independent random variables, covariance and correlation.

RBT Levels: L1, L2, L3

Module-5

Moments &Transformation of random variables: Moments, Central moments, Transformation of random variables Characteristic functions, probability generating and moment generating functions-illustrations. Engineering applications: Entropy and Source coding.

RBT Levels: L1, L2, L3

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Two Unit Tests each of 25 Marks
- 2. Two assignments each of **25 Marks** or **one Skill Development Activity of 50 marks** to attain the COs and POs

The sum of two tests, two assignments/skill Development Activities, will be scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.

5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Text Books

- 1. Linear Algebra and its Applications, David C.Lay et al, Pearson, 5th Edition, 2015.
- 2. Numerical Methods for Scientific and Engineering Computation, M. K. Jain et al, New Age International, 9th Edition, 2014.
- 3. Probability and Random Processes, Scott L. Miller, Donald G.Childers. Elsevier 2004

Reference Books

- 1. Numerical methods for Engineers, Steven C Chapra and Raymond P Canale, McGrawHill, 7th Edition, 2015.
- 2. Higher Engineering Mathematics, B.S. Grewal, Khanna Publishers, 44th Edition, 2017
- 3. Advanced Engineering Mathematics, E.Kreyszig, Wiley, 10thedition, 2015

Web links and Video Lectures (e-Resources):

http://nptel.ac.in/ http://nptel.ac.in/courses.php?disciplineId=111 http://www.class-central.com/subject/math(MOOCs) http://ocw.mit.edu/courses/mathematics/

Skill Development Activities Suggested

•

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	Solve system of linear equations using direct and iterative methods.	
C02	Understand the fundamentals of vector space and bases in reference to transformations.	
CO3	Use the idea of Eigen values and Eigen vectors for the application of Singular value decomposition.	
CO4	Describe the basic notions of discrete and continuous probability distributions.	
CO5	Find out responses of linear systems using statistical and probability tools.	

Semeste	r- I			
	ADVANCED CON	MPUTATIONAL METHODS IN PO	WER SYSTEMS	
Course Co	de	MEE102	CIE Marks	50
Teaching I	Hours/Week (L:P:SDA)	03:02:00	SEE Marks	50
Total Hou	rs of Pedagogy	40 hours Theory + 10-12 Lab slots	Total Marks	100
Credits		04	Exam Hours	03
Course Le	earning objectives:			
•				
		Module-1		
Introducti	on, Concept of incidence ma	atrix, formation of A and A matrices, list	t of other types of ir	cidence matrices
and their	limitations. Representation	of Generator, Transmission lines and T	ransformers, Primit	ive and Network
matrices,	Y-bus formation by Inspection	on method and its algorithm. Merits and	Demerits of Ybus ar	nd Z-bus matrices
in Power S	system Analysis – Areas of ap	opiication.		
		Module-2		
Introducti	on to Load Flow Analysis -	- Y-bus based Power System Static Loa	d Flow Equations. (Gauss-Seidel (GS)
method, P	V-bus treatment, Gauss-Sei	del load flow algorithm. Need of Spars	ity technique for 'w	ell-grown' power
systems, (Concept of Sparsity techniq	ue, Y-bus formation using Sparsity teo	chnique. GS with Sp	arsity technique,
Merits and	l Demerits of GS method			
		Module-3		
Newton-R	aphson (NR) load flow m	ethod and its algorithm. Merits and	Demerits of NR m	ethod; Newton's
Decoupled	l, Fast Decoupled equation,	algorithm of Fast Decoupled (FDC) n	nethod. Merits and	Demerits of FDC
method; A	reas of application of load flo	ow study. AC/DC load flow solutions.		
		Module-4		
Distributio	on system Load Flow metho	ods-Vector based load flow method. Ba	ckward-Forward Sv	veep method and
Current in	jection method Load flow st	udies with Renewable Energy Sources;	Solar and Wind Ener	gy Sources. Need
of short ci	rcuit studies – Assumptions	in short circuit studies – Areas of applica	ition.	0,
		Module-5		
Formation	of Z-bus using step-by-step	approach (Addition of a branch & Add	lition of a link). Mod	lification of Z-bus
elements	for changes. Symmetric	al Sequence Components, significa	nce of symmetric	cal components,
approxima	ations, formation of primitiv	e z abc , y abc , z 012 and y 012 for vari	ous types of faults F	ormation of Z_{bus}^{012}
by step-by	r-step algorithm. Derivation of	of relevant equations for E012 for LLLG a	and LG faults.	540
PRACTIC	AL COMPONENT OF IPCC (M	lay cover all / major modules)		
Sl. NO		Experiments		
1	Solution of Simultaneous	Algebraic equations by Gauss Eliminat	ion – Crout's meth	od and Cholesky
	method			and chorobity
2	Solution of Simultaneous d	ifferential equations by Range Kutta-4 a	nd Modified Euler's	method
3	Program to read and print	out the power system load flow data of 5	BUS and 10 BUS Sv	stems
4	Program to read and prin	t out the power system load flow data	a of- IEEE 14 Bus a	and IEEE 30 Bus
	systems			-
5	Formation of YBUS using tw	wo dimensional arrays by inspection me	thod	
6	Formation of YBUS using S	parsity Technique		
7	Load flow studies by Gauss	-Seidel method using two- dimensional	arrays – sparsity tec	hniques
8	Newton Raphson method	based Load flow studies by using tw	vo – dimensional a	rrays – sparsity
	techniques			
9	Fast Decoupled Load flow r	nethod using two – dimensional arrays -	- sparsity techniques	5
10	Distribution system load fl	ow using backward forward method		

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together **CIE for the theory component of IPCC**

- 1. Two Tests each of 20 Marks
- 2. Two assignments each of **10 Marks/One Skill Development Activity of 20 marks**
- 3. Total Marks of two tests and two assignments/one Skill Development Activity added will be CIE for 60 marks, marks scored will be proportionally scaled down to **30 marks**.

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The**15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test at the end /after completion of all the experiments shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks.SEE for IPCC**

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- 1. The question paper will be set for 100 marks and marks scored will be scaled down proportionately to 50 marks.
- 2. The question paper will have ten questions. Each question is set for 20 marks.
- 3. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 4. The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical component).

- The minimum marks to be secured in CIE to appear for SEE shall be the 15 (50% of maximum marks-30) in the theory component and 10 (50% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.
- SEE will be conducted for 100 marks and students shall secure 40% of the maximum marks to qualify in the SEE. Marks secured will be scaled down to 50. (Student has to secure an aggregate of 50% of maximum marks of the course(CIE+SEE)

Suggested Learning Resources:

Books

- 1. Computer Methods in Power System Analysis, Stagg and El Abiad , McGraw Hill, ISE, 1986
- 2. Computer techniques in Power System Analysis, M A Pai and Dr. Dheeman Chatterjee, McGraw hill, 2014, 3e
- 3. Power System Analysis, Hadi Sadat, McGraw Hill International Edition 1999
- 4. Computer Modeling of Electrical Power Systems, J. Arrilaga and NR Watson, John Wiley and Sons, 2001, 1e

Web links and Video Lectures (e-Resources):

- 1. Website reference links: https://www.engineeringonline.ncsu.edu/course/ece-753-computational-methods-for-power-systems/
- 2. https://www.youtube.com/playlist?list=PL36A60B630E8C7B56
- 3. https://www.youtube.com/playlist?list=PL-uxPiMl0_6GWFPGXgVapb1yjVAZs9YGz
- 4. https://nptel.ac.in/courses/108107028

Skill Dev	elopment Activities Suggested	
Course o	utcome (Course Skill Set)	
Sl. No.	Description	Blooms Level
C01	Develop mathematical models for load flow studies for Transmission and Distribution systems and Fault analysis	
C02	Prepare the input data required for load flow analysis and fault calculations	
C03	Develop computer programs (MATLAB, Power World) to solve power flow problems Decoupled Power Flow, Fast Decoupled Power Flow, DC Power Flow Optimal power flow	
C04	Apply appropriate algorithms for Distribution systems load flow studies	
C05	Develop power system software /implementation of algorithm for static power system studies	

Semester- I			
HIGH VOLT.	AGE & ELECTRICAL INSU	LATION ENGINEERING	
Course Code	MEE103	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	3:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	3
Course Learning objectives:			
•			
	Modulo 1		
INTRODUCTION		ONTROL AND ESTIMATION I	
INTRODUCTION: Flectric Charge and Discharge Fle	etric and Magnetic Fields	and Electromagnetics Dielectr	ic and Electrical
Inculation Electrical Proakdown	Clobal Proaldourn Local	Proakdown Corona Stroom	or and Aurora
Conscitones and Consciton Strey C	Global Bleakuowii, Local	Bleakuowii, Cololia, Sueali	el allu Aulula,
Dielectrice "Eh" Classification of Ele	apacitance, Electric Field III	ria Field Interneity (Strage Control	al) Estimation of
Dielectrics, ED, Classification of Ele		Inc Fleid Intensity (Stress Contro	
Electric Field Intensity. Analysis of E	lectric Field Intensity in Isot	cropic Multidielectric System, Ba	sic Equations for
Potential and Field Intensity in Electr	ostatic Fields.		
	Module-2		
ELECTRI	C FIELDS, THEIR CONTROL	AND ESTIMATION-I	
Analytical Methods for the Estimation	n of Electric Field Intensity in	n Homogeneous Isotropic Single	Dielectric, Direct
Solution of Laplace Equation. Analy	sis of Electric Field Intensit	y in Isotropic Multidielectric Sy	stem, Field with
Longitudinal Interface, Field with Pe	rpendicular Interface, Nume	rical Methods for the Estimation	n of Electric Field
Intensity, Finite Element Method (F	EM) Charge Simulation Me	thod (CSM), Numerical Optimiz	ation of Electric
Fields, Optimization by Displacemen	t of Contour Points, Optimiz	ation by Changing the Positions	s of Optimization
Charges, and Contour Points. Optimiz	ation by Modification of Con	tour Elements.	1
	Module-3		
ELECTRICAL PR	OPERTIES OF VACUUM AS H	HIGH VOLTAGE INSULATION	
Pre-breakdown Electron Emission	in Vacuum: Mechanism of E	lectron Emission from Metallic S	urfaces
Non-Metallic Electron Emission Mec	hanisms Pre-Breakdown Co	onduction and Spark Breakdo	wn in Vacuum:
Electrical Breakdown in Vacuum Inte	errupters, High Current Arc (Quenching in Vacuum Delayed R	e-Ignition of Arcs
Effect of Insulator Surface Phenomer	na. Effect of Conditioning of	Electrodes on Breakdown Volta	ge, Effect of Area
of Electrodes on Breakdown in Vacu	um.		
	Module-4		
LIQUID DIELECTRICS, TH	EIR CLASSIFICATION, PROF	PERTIES AND BREAKDOWN ST	RENGTH
Classification of Liquid Dielectr	ics : Mineral Insulating	Oils. Mineral Insulating Oil i	n Transformers.
Vegetable Oils Synthetic Liquid Die	electrics, the Chlorinated Di	phenyles, Halogen Free Synthet	ic Oils, Inorganic
Liquids as Insulation, Polar and Nor	polar Dielectrics, Dielectric	Properties of Insulating Mat	erials: Insulation
Resistance Offered by Dielectrics, Pe	rmittivity of Insulating Mater	rials, Polarization in Insulating M	laterials, Effect of
Time on Polarization, Polarization u	nder Direct Voltage, Polariza	ation under Alternating Voltage,	Dielectric Power
Losses in Insulating Materials, Break	down in Liquid Dielectrics	: Electric Conduction in Insulating	ng Liquids, Liquid
Dielectrics in Motion and Electro h	ydrodynamics, Intrinsic Bre	akdown Strength, Practical Bre	akdown Strength
Measurement at Near Uniform Fields	s, Effect of Moisture and Ter	nperature on Breakdown Streng	th, Breakdown in
Extremely Non-uniform Fields and th	Modulo-5	Aging in Mineral Insulating Of	15
SOLID DIFLECTRICS TH	FIR SOURCES PROPERTIES	SAND BEHAVIOR IN ELECTRIC	FIFLDS
Classification of Solid Insulating M	aterials: Inorganic Insulatin	g Materials, Ceramic Insulating M	Materials, Glass as
an Insulating Material, Polymeric O	rganic Materials. Partial Br	eakdown in Solid Dielectrics	, Internal Partial
Breakdown, Surface Discharge (Tra	acking) Degradation of Sol	id Dielectrics Caused by, Inhi	bition of Partial
Breakdown/Treeing in Solid Dielect	rics, Partial Breakdown Dete	ction and Measurement , Indire	ct Methods of PB

Detection, Direct Methods of PB Detection and Measurement, **Breakdown and Pre-Breakdown Phenomena in Solid Dielectrics,** Intrinsic Breakdown Strength of Solid Dielectrics, Thermal Breakdown, Mechanism of Breakdown in Extremely Nonuniform Fields, "Treeing" a Pre-Breakdown Phenomenon in Polymeric Dielectrics, Forms of Treeing Patterns, Classification of Treeing Process, Requirement of Time for Breakdown, Estimation of Life Expectancy Characteristics, Practical Breakdown Strength and Electric Stress in Service of Solid Dielectrics

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 3. Two Unit Tests each of 25 Marks
- 4. Two assignments each of **25 Marks** or **one Skill Development Activity of 50 marks** to attain the COs and POs
- The sum of two tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

- 6. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 7. The question paper will have ten full questions carrying equal marks.
- 8. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 9. Each full question will have a sub-question covering all the topics under a module.
- 10. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. R. Arora and W. Mosch, "High Voltage and Electrical Insulation Engineering", Wiley-IEEE press
- 2. N. H. Malik, A. A. Al-Arainy and M. I. Qureshi, "Electrical Insulation in Power System", Marcel Dekker Inc.
- 3. A. Haddad and D. F. Warne, "Advances in High Voltage Engineering", Institution of Engineering and Technology
- 4. R. E. James and Q. Su, "Condition Assessment of High Voltage Insulation in Power System Equipment", The Institution of Engineering and Technology
- 5. S. Chakravorti, D. Dey and B. Chatterjee, "Recent Trends in the Condition Monitoring of Transformers", Springer- Verlag
- 6. S. Chakravorti, "Electric Field Analysis", CRC Press (Taylor & Francis)

Web links and Video Lectures (e-Resources):

- https://nptel.ac.in/
- https://archive.nptel.ac.in/courses/108/104/108104048/
- Online web portal http://nptel.ac.in
- YouTube channel for NPTEL most subscribed educational channel

Skill Development Activities Suggested

Course outcome (Course Skill Set)

At the end	d of the course the student will be able to :	
Sl. No.	Description	Blooms
		Level
C01	Understand the basic physics related to various breakdown processes in Dielectric, Electrical Insulation and Isotropic Multidielectric System.	
CO2	Learn different Numerical field estimation methods for Homogeneous Isotropic Single & Multi dielectric Systems	
CO3	Understand Pre-breakdown Electron Emission, Conduction and Spark Breakdown in Vacuum	
CO4	Understand Classification & dielectric properties of liquid insulating materials	
C05	Understand Classification & dielectric properties of Solid insulating materials	

Semester-I

ENERGY, ECOLOGY AND ENVIRONMENT

Course Code	MEE104	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	3:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03

Course Learning objectives:

This course introduces students to environment concerns. Students are expected to learn about environment, factors affecting it, environmental ethics and its protection through lectures, presentations, documentaries and field visits.

Module-1

Interrelation between energy, ecology and environment. Sun as a source of energy, nature of its radiations. Interrelationship between energy and environment, Sun as a source of energy, nature of its radiation, Biological processes, photosynthesis, Autecology and Synecology.

Module-2

Population, Community Ecosystem (wetland, terrestrial, marine). Population, Community Ecosystem (wetland, terrestrial, marine) Food chains, Ecosystem theories.

Module-3
Sources of energy, Classification of energy sources. Environmental issues related to harnessing to fossil fuels (coal,
oil, natural gas), geothermal, tidal, nuclear energy, solar, wind, hydropower, biomass.

Module-4

Energy flow and nutrient cycling in ecosystem and environmental, Degradation. Air and water pollution.

Module-5

Environmental issues related to harnessing to fossil fuels (coal, oil, natural gas), geothermal, tidal, nuclear energy, solar, wind, hydropower, biomass, Energy flow and nutrient cycling in ecosystems

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 5. Two Unit Tests each of 25 Marks
- 6. Two assignments each of **25 Marks** or **one Skill Development Activity of 50 marks** to attain the COs and POs

The sum of two tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

- 11. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 12. The question paper will have ten full questions carrying equal marks.
- 13. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 14. Each full question will have a sub-question covering all the topics under a module.
- 15. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. G. M. Masters, W. P. Ela, Introduction to Environmental Engineering and Science, Prentice Hall, 2007.
- 2. D. Nevers, Air Pollution Control Engineering, McGraw Hill, 2001.
- 3. A. Mackenzie, A. S. Ball, S. Virdee, Instant Notes: Ecology, BIOS Scientific Publishers Ltd., 2001.
- 4. F. Armstrong, K. Blunde, Energy Beyond oil, Oxford University Press, 2007.
- 5. G. T. Miller, Spoolman S., Environmental Science, Yolanda Cossio, 2010.
- 6. J. L. Chapman, W. J. Reiss, Ecology Principles and Applications, Cambridge University Press, 2008.

Web links and	Video Lectures	(e-Resources):
---------------	-----------------------	----------------

- 1. <u>https://onlinecourses.nptel.ac.in/noc19_ge23/preview</u>
- 2. https://nptel.ac.in/courses/127105018
- 3. <u>https://archive.nptel.ac.in/noc/courses/noc19/SEM2/noc19-ge23/</u>

Skill Development Activities Suggested

Course outcome (Course Skill Set)

•

At the end of the course the student will be able to :

Description	Blooms Level
-	Description

Semester-I ELECTRICAL ENERGY MANAGEMENT Course Code Mxx105 **CIE Marks** 50 Teaching Hours/Week (L:P:SDA) 3:0:0 SEE Marks 50 Total Hours of Pedagogy 40 **Total Marks** 100 Credits 03 **Exam Hours** 03 **Course Learning objectives:** Module-1 INTRODUCTION: Need for energy management - energy basics- designing and starting an energy management program - energy accounting -energy monitoring, targeting and reporting- energy audit process. Module-2 ENERGY COST AND LOAD MANAGEMENT : Important concepts in an economic analysis - Economic models-Time value of money-Utility rate structures- cost of electricity-Loss evaluation- Load management: Demand control techniques-Utility monitoring and control system-HVAC and energy. Module-3 ENERGY MANAGEMENT FOR MOTORS & ELECTRICAL EQUIPMENT: Systems and equipment- Electric motors -Transformers and reactors-Capacitors and synchronous machines. **Module-4** METERING FOR ENERGYMANAGEMENT: Relationships between parameters-Units of measure-Typical cost factors-Utility meters - Timing of meter disc for kilowatt measurement - Demand meters - Paralleling of current transformers - Instrument transformer burdens-Multitasking solid-state meters - Metering location vs. requirements- Metering techniques and practical examples. Module-5 LIGHTING SYSTEMS: Concept of lighting systems - The task and the working space -Light sources - Ballasts -Luminaries - Lighting controls-Optimizing lighting energy - Power factor and effect of harmonics on power quality -Cost analysis techniques-Lighting and energy standards. **Assessment Details (both CIE and SEE)** The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. **Continuous Internal Evaluation:** 7. Two Unit Tests each of 25 Marks 8. Two assignments each of 25 Marks or one Skill Development Activity of 50 marks to attain the COs and POs The sum of two tests, two assignments/skill Development Activities, will be scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. Semester-End Examination: 16. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50. 17. The question paper will have ten full questions carrying equal marks. 18. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module. 19. Each full question will have a sub-question covering all the topics under a module. 20. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:	
Text Books :	
1. Reay D.A, Industrial Energy Conservation, first edition, Pergamon Press, 1977.	
2. IEEE Recommended Practice for Energy Management in Industrial and CommercialFaciliti	es, IEEE, 1996.
3. Amit K. Tyagi, Handbook on Energy Audits and Management, TERI, 2003.	
References :	
 Barney L. Capehart, Wayne C. Turner, and William J. Kennedy, Guide to EnergyManagement Fairmont Press. Inc., 2006 	t, Fifth Edition, The
 Eastop T.D & Croft D.R, Energy Efficiency for Engineers and Technologists, LogmanScientif ISBN-0-582-03184 1990 	ic & Technical,
 Capehart B.L., Turner W.C., Kennedy W.J. (2011). Guide to Energy Management (7thEdition ISBN: 1439883483). Fairmont Press.
 Patrick D.R., Fardo S.W., Richardson R.E., Fardo B.W. (2014). Energy ConservationGuideboo Fairmont Press, ISBN: 1482255693 	ok (3rd Edition).
 Kreith F., Goswami D.Y. (2007). Energy Management and Conservation Handbook. CRC Pres 9781420044294. 	ss. ISBN:
Web links and Video Lectures (e-Resources):	
https://www.youtube.com/watch?v=agSEQaVMkDE	
https://www.youtube.com/watch?v=6vOg-u7c1IE	
https://www.youtube.com/watch?v=uy9lZCdkQIM	
https://www.youtube.com/watch?v=8Aqc44PG4Ws	
https://www.youtube.com/watch?v=8Aqc44PG4Ws Skill Development Activities Suggested •	
https://www.youtube.com/watch?v=8Aqc44PG4Ws Skill Development Activities Suggested Course outcome (Course Skill Set)	
https://www.youtube.com/watch?v=8Aqc44PG4Ws Skill Development Activities Suggested • • Course outcome (Course Skill Set) At the end of the course the student will be able to :	
https://www.youtube.com/watch?v=8Aqc44PG4Ws Skill Development Activities Suggested • • Course outcome (Course Skill Set) At the end of the course the student will be able to : Sl. No. Description	Blooms Level
https://www.youtube.com/watch?v=8Aqc44PG4Ws Skill Development Activities Suggested • • Course outcome (Course Skill Set) At the end of the course the student will be able to : Sl. No. Description C01	Blooms Level
https://www.youtube.com/watch?v=8Aqc44PG4Ws Skill Development Activities Suggested • • Course outcome (Course Skill Set) At the end of the course the student will be able to : Sl. No. Description CO1 CO2	Blooms Level

Semes	ter- I			
	POWER SYSTE	MS & POWER CONVERTERS	LABORATORY	
Course	Code	MEEL106A	CIE Marks	50
Teaching Hours/Week (L:P:SDA)		40	SEE Marks	50
Total Ho	ours of Pedagogy	1:2:0	Total Marks	100
Credits	Learning chiestiyes:	02	Exam Hours	03
course	Learning objectives:			
The pow	ver system lab will be comprise	ng of at least TWO experiments	from each of the sub	ojects 22XXX12 to
22XXXI transfor	5 EACEPT 22AAAT4 SUCH as f	power system load flow short circ	cuit studies and now	ronous machines,
studies	using MATLAB-SIMULINK, PSCA	D. CAPS software. Study of power s	semiconductor device	es: study AC to DC.
DC to I	DC converter circuits etc using	software, design as well as by bu	uilding up the circui	ts in laboratories.
Renewa	ble energy systems.			
Sl. No.		Experiments		
		POWER CONVERTERS	5	
1	Analysis of DC-DC converters (a) Buck converter. (b) Boost conve	rter. and (c) Buck- Boo	ost converter
2	Closed loop control of Buck an	d Boost converter	()	
3	Unipolar and bipolar PWM techniques for single-phase half-bridge inverters			
4	Unipolar and bipolar PWM tec	hniques for single-phase full-bridge	inverters	
5	Single phase Five level cascaded H-Bridge inverter			
	Power Systems (This Lab	Shall be Comprising of at leas	st 5 Experiments f	rom Part-A & 3
	Experiments from Part-B)		~	
		PART-A		
6	To perform AC-DC Power flow	analysis on 5 Bus systems with HVD	C transmission line usi	ing PSCAD/POWER
	WORLD/SCI-LAB/MAT-LAB/			
7	To carry out Short Circuit studies on a given Power System using PSCAD/POWER WORLD/SCI-LAB/MAT-LAB/			
8	MVAR Compensation studies on normal and heavily loaded power systems using PSCAD/POWER			
Q	WORLD/SCI-LAB/MAT-LAB/ Transient Stability Analysis of Power Systems using DSCAD /DOWED MODED /SCI-LAB /MAT-LAB /			
10	Contingency evaluation and analysis of power systems using PSCAD/POWER WORLD/SCI-LAB/MAT-LAB/			
10	Contingency evaluation and analysis of power system using simulation package			
11	To perform State Estimation and bad data detection for a given Power System.			
12				
40		PARI-B	.1 1	
13	Determination of Sequence Imp	endence of an Alternator by direct n	iethod.	
14	Determination of Sequence impedance of an Alternator by fault Analysis.			
15	Measurement of sequence impedance of a three phase transformer			
16	Power angle characteristics of a	salient pole Synchronous Machine.		-l
1/	Poly-phase connection on three	single phase transformers and meas	CIE) if any	placement.
1	Ctudu the characteristics of ICD	T MOSEET & CTO's Design of gate d	vive circuite for ICDT 9	MOCEET
1	Study the characteristics of IGB	i, MOSFEI & GIOS. Design of gate a	d investor with 1200	2 MUSFETS.
2	of operation Study of 3- Φ sinu	solidal PWM inverter	Φ Inverter with 120° a	illu 180° llioue
3	Determination of input n f and	harmonic factor for 3- Φ full convert	er & for 3- & semi con	verter
4	Reactive Power Control Using T	an Changing Transformer		
	Regulation and efficiency chara	cteristics of Artificial Transmission I	ine	
6	Determination of Sequence Rea	ctance's of Power System Elements (Alternator & 3- @ Trai	nsformer)
7	Analysis of unbalanced voltages	using Symmetrical Component Ana	lvser	
, Q	Short circuit studies using DC N	etwork Analyser	.,	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. The student has to secure not less than 40% of maximum marks in the semester-end examination (SEE). In total of CIE and SEE student has to secure 50% maximum marks of the course.

Continuous Internal Evaluation (CIE):

CIE marks for the practical course is **50 Marks**.

The split-up of CIE marks for record/ journal and test are in the ratio **60:40**.

- Each experiment to be evaluated for conduction with observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments designed by the faculty who is handling the laboratory session and is made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will beevaluated for 10 marks.
- Total marks scored by the students are scaled downed to 30 marks (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8th week of thesemester and the second test shall be conducted after the 14th week of the semester.
- In each test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carrya weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability.
- The average of 02 tests is scaled down to **20 marks** (40% of the maximum marks).

The Sum of **scaled-down** marks scored in the report write-up/journal and average marks of two tests is the total

Semester End Evaluation (SEE):

SEE marks for the practical course is 50 Marks. SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the University. All laboratory experiments are to be included for practical examination. (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners.

Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly. Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners) Change of experiment is allowed only once and 10% Marks allotted to the procedure part to be made zero. The duration of SEE is 03 hours

Suggested Learning Resources: Books

Web links and Video Lectures (e-Resources):

• <u>https://nptel.ac.in/</u>

Skill Development Activities Suggested

Course o	utcome (Course Skill Set)	
At the end	l of the course the student will be able to :	
Sl. No.	Description	Blooms Level
C01		
C02		
CO3		
L		

Semester-I

ENERGY LABORATORY

Course Code	MEEL106B	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	40	SEE Marks	50
Total Hours of Pedagogy	1:2:0	Total Marks	100
Credits	02	Exam Hours	03

Course Learning objectives:

The aim of Energy Laboratory II is to ground the analytical subject material in a practical problem, meaning that the skills and knowledge students learn throughout the programme will be applied in real renewable energy engineering work.

Sl. No.	Experiments	
1	Study of Characteristics of Francis Turbine	
2	Characterization of solid fuel (Proximate Analysis)	
3	Determination of calorific value of solid fuel	
4	Performance study of heat pump system & Thermoelectric Generator and Refrigerator	
5	To study the performance and emission characteristics of a spark ignition engine for ethanol/butanol- gasoline blend.	
6	Fractional distillation of Petroleum	
7	Performance of Solar Still & I-V Characteristics a Solar Cell 3, Performance of Photo-voltaic Thermal titles 3, Photovoltaic-Roof Top on Synergy Building	
8	To study the performance and emission characteristics of a diesel engine for biodiesel-diesel blend	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. The student has to secure not less than 40% of maximum marks in the semester-end examination (SEE). In total of CIE and SEE student has to secure 50% maximum marks of the course.

Continuous Internal Evaluation (CIE):

CIE marks for the practical course is 50 Marks.

The split-up of CIE marks for record/ journal and test are in the ratio 60:40.

- Each experiment to be evaluated for conduction with observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments designed by the faculty who is handling the laboratory session and is made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled downed to 30 marks (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8th week of the semester and the second test shall be conducted after the 14th week of the semester.
- In each test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability.
- The average of 02 tests is scaled down to 20 marks (40% of the maximum marks).

Semester End Evaluation (SEE):

SEE marks for the practical course is 50 Marks.

SEE shall be conducted jointly by the two examiners of the same institute; examiners are appointed by the University.

All laboratory experiments are to be included for practical examination.

(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. OR based on the course requirement evaluation rubrics shall be decided jointly by examiners.

Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.

Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. General
rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in - 60%, Viva-voce
20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down
to 50 marks (however, based on course type, rubrics shall be decided by the examiners)

Change of experiment is allowed only once and 10% Marks allotted to the procedure part to be made zero. The duration of SEE is 03 hours

Suggested Learning Resources: Books

Web links and Video Lectures (e-Resources):

https://nptel.ac.in/

٠

Skill Development Activities Suggested

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Description	Blooms Level
	Description