Course Code		SUSTAINABLE DESIGN S		
		MDAC201	CIE Marks	50
Teaching Hours/Week (L:P:SDA)		02:06:00	Viva Marks	50
Total Hours of Pedagogy		8	Total Marks	100
Credits		9	Exam Hours	-
digital so	of study introduces ftware to design pro		hinking expressed through the a elop the ability to use digital sof lding typology	
		Module-1		
	ign projects with sus	tainable features, Analysis of	of design - Case Studies Examples f their environmental impact and ducted , through the use of powerp	design
to relevant para outcomes in a c	ameters , parametric ligital environment v	analysis. computational tool with reference to appropriate	tion to parametric platforms - da s and skills , Produce creative des parametric software use for des	sign signing a
to relevant par outcomes in a c building typolo	ameters , parametric digital environment v gy - Sustainable desi Collaborative a	ata mapping and their transla analysis. computational tool with reference to appropriate gn principles (energy efficier nd Cooperative learning : ph	s and skills , Produce creative des parametric software use for des ncy, materials, site considerations nysical case studies	sign signing a s)
to relevant para outcomes in a c	ameters , parametric digital environment v ogy - Sustainable desi Collaborative a ICT and Digital	ata mapping and their transla analysis. computational tool with reference to appropriate gn principles (energy efficier nd Cooperative learning : ph support : To introduce and un to the analysis and study of th ysis	s and skills , Produce creative des parametric software use for des ncy, materials, site considerations	sign signing a s) ad constrain
to relevant par outcomes in a c building typolo Teaching- Learning Process	ameters , parametric digital environment v ogy - Sustainable desi Collaborative a ICT and Digital to incorporate in studies and analy	ata mapping and their translate analysis. computational tool with reference to appropriate gn principles (energy efficien and Cooperative learning: ph support: To introduce and un to the analysis and study of the ysis Module-3	s and skills , Produce creative des parametric software use for des ncy, materials, site considerations <i>mysical case studies</i> <i>nderstand different parameters an</i> <i>ne project . power presentation for</i>	sign signing a s) ad constrain relevant
to relevant par outcomes in a o building typolo Teaching- Learning Process Identifyin design and exec	ameters , parametric digital environment v ggy - Sustainable desi Collaborative a ICT and Digital to incorporate in studies and analy g and defining the ro cution process - Intre	ata mapping and their translate analysis. computational tool with reference to appropriate gn principles (energy efficien and Cooperative learning: ph support: To introduce and un to the analysis and study of the ysis Module-3	s and skills , Produce creative des parametric software use for des ncy, materials, site considerations nysical case studies nderstand different parameters an ne project . power presentation for a powerful design tool that augm n principles	sign signing a s) ad constrain relevant
to relevant par outcomes in a o building typolo Teaching- Learning Process Identifyin design and exec	ameters , parametric digital environment v ogy - Sustainable desi Collaborative a ICT and Digital to incorporate in studies and analy g and defining the ro cution process - Intre- echniques for sustain	ata mapping and their transla analysis. computational tool with reference to appropriate gn principles (energy efficier nd Cooperative learning : ph support : To introduce and un to the analysis and study of th ysis <u>Module-3</u> le of parametric platforms as poduction to generative design hability metrics (e.g., energy c	s and skills , Produce creative des parametric software use for des ncy, materials, site considerations nysical case studies nderstand different parameters an ne project . power presentation for a powerful design tool that augm n principles	sign signing a ad constrain relevant nents the
to relevant par outcomes in a o building typolo Teaching- Learning Process Identifyin design and exe Optimization te Teaching- Learning	ameters , parametric digital environment v ogy - Sustainable desi Collaborative a ICT and Digital to incorporate in studies and analy g and defining the ro cution process - Intre- echniques for sustain	ata mapping and their transla analysis. computational tool with reference to appropriate gn principles (energy efficier nd Cooperative learning : ph support : To introduce and un to the analysis and study of th ysis <u>Module-3</u> le of parametric platforms as poduction to generative design ability metrics (e.g., energy c	s and skills , Produce creative des parametric software use for des ncy, materials, site considerations nysical case studies nderstand different parameters an ne project . power presentation for s a powerful design tool that augu n principles consumption, daylighting)	sign signing a ad constrain relevant nents the

Teaching- Learning Process	<i>ICT and Digital support</i> : Lecture will be conducted , through the use of power point presentation ,software tools will be taught
	Module-5
outcomes in a	r oriented design software as design tools to achieve design objectives -Produce creative design a digital environment with reference to appropriate parametric software use for designing a logy - responsive and adaptive Design
Teaching-	<i>ICT and Digital support</i> : Lecture will be conducted , through the use of power point presentation

Assessment Details (both CIE and SEE)

Learning Process

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

CIE marks shall be awarded by a committee comprising of Principal/Dean, PG Course Coordinator/HOD and Guide/Co-guide of the department. The CIE marks awarded for PSC (professional supportive course), shall be based on the progress of the student throughout the semester, presentation skills in seminars and submission of the report

Semester End Examination:

- The student needs to submit his/her report done throughout the semester, including the data collection for the Viva examination, at least one day prior to the Viva examination to the PG course coordinator/HOD.
- The Viva-voce will be evaluated by external examiners appointed by the University along with PG Course coordinator/guide/co-guide or an internal examiner.
- The viva-voce marks list generated is to be signed by both internal and external examiners and submitted to VTU in the sealed cover through the Principal of the institution.

Suggested Learning Resources:

Books

- Tschumi, Bernard ; Notations: Diagrams and Sequences
- Koolhaas, Rem ; Delirious New York: A Retroactive Manifesto for Manhattan,
- Fenton, Joseph , Pamphlet Architecture 11: Hybrid Buildings
- Woodbury, Robert ; Elements of Parametric Design, Routledge New York
- Oxman, Rivka and Robert ; Theories of the Digital in Architecture, Routledge New York.

Web links and Video Lectures (e-Resources):

https://www.danieldavis.com/a-history-of-parametric/

- https://vdoc.pub/download/scripting-cultures-architectural-design-and-programming-53g6jiss52r0
- <u>https://davidfrico.com/evolutionary-architecture-principles.pdf</u>
- <u>https://www.perlego.com/book/2388244/from-control-to-design-pdf</u>

https://www.youtube.com/watch?v=SY2VUBE6SgA

Skill Development Activities Suggested

Students will work on above mentioned in detail and will submit the work in the form of drawings and/ models and supplementary documentation as found suitable to explain the design process and product judiciously

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	Students should be able to synthesize the knowledge they have acquired throughout the year.	L2
C02	To understand developments in BIM, parametric and generative design and digital fabrication in combination with the morphogenetic architecture framework	L2
CO3	Advanced their knowledge on contemporary architectural discourse in close relation to the design task.	L3
C04	To understand the comprehensive design , of a design project	L4
C05	To establish new ways of thinking about design and fabrication, professional practice and its cultural impact.	L4

Program Outcome of this program. (CPM)

Sl. No.	Description	POs
1	Decoding the architectural design process as a collaborative, iterative and evolutionary vector framework	P01
2	The course/project goal is to increase the student's knowledge in this area/field and skills/knowledge in the field of architecture in general	P02
3	The students will enter the project with varying degrees of knowledge/skills and will subsequently end up at different levels at the end of the course/project.	P03
4	The individual student must show an increase in the particular skills/knowledge offered and in the field of architecture in general	P04
5	A framework is proposed as a disciplinary bridge to enable the team members to collaboratively identify and employ appropriate processes to implement morphogenetic IBs	P05

Mapping of COS and POS

	P01	P02	P03	P04	P05
CO1	0	Μ	М	Н	Н
CO2	L	Μ	Н	Μ	L
CO3	0	Μ	М	Н	Н
CO4	0	Μ	М	L	Н
CO5	L	L	Μ	Μ	Н

H – High , M – Medium, L - Low

Semester-II INTERACTIVE ARCHITECTURE Course Code MDAC202 **CIE Marks** 50 02:00:02 50 Teaching Hours/Week (L:P:SDA) Viva Marks Total Hours of Pedagogy 4 **Total Marks** 100 Credits 4 **Exam Hours** -**Course Learning objectives:** Gain insight into interactive architecture's principles and evolution, explore technological integration with sensors and digital interfaces, and develop skills to design and critique innovative projects addressing urban challenges Module-1 **Overview-** Definition and evolution of interactive architecture, Importance of interactivity in architectural design- Key Concepts - Principles of interaction design in architecture, Relationship between human behavior and interactive spaces, **Case Studies** Examples of interactive architecture projects worldwide, Analysis of their design intent and user engagement **Teaching-ICT and Digital support**: Lecture will be conducted, through the use of powerpoint Learning presentation Process Module-2 Introduction to sensors, actuators, and responsive technologies used in interactive architecture Overview of IoT (Internet of Things) applications in buildings- Sensing Technologies- Types of sensors used in interactive architecture (e.g., motion sensors, light sensors)- Integration of sensor data with building systems **ICT and Digital support**: Lecture will be conducted, through the use of powerpoint **Teaching-**Learning presentation Process **Module-3** Actuation and Responsive Systems- Actuators for kinetic architecture and responsive elements, Designing feedback loops for real-time interaction, Interactive Design Principles- User-centered design approaches for interactive spaces- Designing for accessibility and inclusivity in interactive environments, experimenting with basic sensors and actuators to create interactive prototypes **Teaching-ICT and Digital support**: Lecture will be conducted, through the use of powerpoint Learning presentation Process Module-4 Digital interfaces & interaction design - Digital Interfaces in Architecture- Introduction to interactive displays, Using digital interfaces for user interaction and information display, Gesture and Motion-Based Interaction - Designing interactive environments based on gestures and body movement, Case studies of gesture-controlled architecture

eaching- earning rocess	<i>ICT and Digital support</i> : Lecture will be conducted , through the use of powerpoint presentation
	Module-5
interventions, R	ing and sound, interactive urban spaces ,Designing interactive public spaces and urban ole of interactive architecture in smart cities and urban planning, spatial computing I testing interactive architectural concepts in a controlled environment
Teaching-	ICT and Digital support: Lecture will be conducted , through the use of powerpoint
Learning	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

CIE marks shall be awarded by a committee comprising of Principal/Dean, PG Course Coordinator/HOD and Guide/Co-guide of the department. The CIE marks awarded for PSC (professional supportive course), shall be based on the progress of the student throughout the semester, presentation skills in seminars and submission of the report

Semester End Examination:

- The student needs to submit his/her report done throughout the semester, including the data collection for the Viva examination, at least one day prior to the Viva examination to the PG course coordinator/HOD.
- The Viva-voce will be evaluated by external examiners appointed by the University along with PG Course coordinator/ guide/ co-guide or an internal examiner.
- The viva-voce marks list generated is to be signed by both internal and external examiners and submitted to VTU in the sealed cover through the Principal of the institution.

Suggested Learning Resources:

- Books
 - Internet of Things A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015
 - Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014,
 - Make sensors: Terokarvinen, kemo, karvinen and villey valtokari, 1st edition, maker media, 2014.

Web links and Video Lectures (e-Resources):

- <u>https://www.tutorialspoint.com/internet_of_things/internet_of_things_tutorial.pdf</u>
- <u>https://www.youtube.com/watch?v=LlhmzVL5bm8</u>
- https://www.youtube.com/watch?v=Fj02iTrWUx0

Skill Development Activities Suggested

Students will be able to configure basic protocols in sensor networks. Program and configure Arduino boards for various designs.Python programming and interfacing, Design IoT applications in different domains

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	Students should be able to synthesize the knowledge they have acquired throughout the year.	L2
C02	The students will be familiar with associated concepts of basic protocols in sensor networks	L3
CO3	Advanced their knowledge on Program and configure Arduino boards for various designs.	L3
C04	Python programming and interfacing for Raspberry Pi	L4
C05	Design Iot applications in different domains	L4

Program Outcome of this program. (CPM)

Sl. No.	Description	POs
1	Interpret the impact and challenges posed by IoT networks leading to new architectural models	P01
2	Compare and contrast the deployment of smart objects and the technologies to connect them to network.	PO2
3	Appraise the role of IoT protocols for efficient network communication.	PO3
4	Elaborate the need for Data Analytics and Security in IoT	PO4
5	Illustrate different sensor technologies for sensing real world entities and identify the applications of IoT in Industry.	P05

Mapping of COS and POS

	P01	P02	P03	P04	P05
CO1	0	M	Μ	M	Н
CO2	L	М	М	M	Μ
CO3	0	L	Μ	M	Н
CO4	L	0	L	L	Μ
CO5	0	L	L	Μ	Н

H – High , M – Medium, L - Low

Course Code			S THEORIES AND HISTORY -I	1
course coue		MDAC203	CIE Marks	50
Teaching Hou	rs/Week (L:P:SDA)	03:02:00	SEE Marks	50
Total Hours o	f Pedagogy	5	Total Marks	100
Credits		3	Exam Hours	3
To deve			nmic dynamics through formal co It a dynamic interaction of diverse	
		Module-1		
on design and new architect Teaching- Learning	l production technolo ural design processes	gies in architecture, the focu	linary effects of evolutionary desi as is on developing these as crea ducted , through the use of powerp	tive input
Process				
		Module-2		
		amiliarise students with thes architectural design research	e instruments, their associated o	conceptual
fields and wit Teaching- Learning	h their application to a ICT and Digital to incorporate in	architectural design research support: To introduce and u to the analysis and study of th		nd constrain
	h their application to a	architectural design research support: To introduce and u to the analysis and study of th	nderstand different parameters an	nd constrain
fields and wit Teaching- Learning Process Course con Behaviour, Fr	h their application to a ICT and Digital to incorporate in studies and analy tent includes theories	architectural design research support: To introduce and u to the analysis and study of th vsis <u>Module-3</u> of Generative algorithms wit ilar Automata, genetic algori	nderstand different parameters an	nd constrain relevant rm
fields and wit Teaching- Learning Process Course con Behaviour, Fr	h their application to a ICT and Digital to incorporate in studies and analy tent includes theories actals, L systems, cellu analysed and studied	support: To introduce and un to the analysis and study of the vsis <u>Module-3</u> of Generative algorithms wit alar Automata, genetic algori	nderstand different parameters an the project . power presentation for hin the realm of Emergence (swa	nd constrain relevant rm , building
fields and wit Teaching- Learning Process Course con Behaviour, Fr egs should be Teaching- Learning	h their application to a ICT and Digital to incorporate in studies and analy tent includes theories actals, L systems, cellu analysed and studied ICT and Digital	support: To introduce and un to the analysis and study of the vsis <u>Module-3</u> of Generative algorithms wit alar Automata, genetic algori	nderstand different parameters an the project . power presentation for hin the realm of Emergence (swa thms). The concept ,various tools	nd constrain relevant rm , building
fields and with Teaching- Learning Process Course con Behaviour, Fr egs should be Teaching- Learning Process The cou	h their application to a ICT and Digital to incorporate in studies and analy tent includes theories actals, L systems, cellu analysed and studied ICT and Digital presentation	architectural design research support: To introduce and u to the analysis and study of the vsis Module-3 of Generative algorithms with alar Automata, genetic algori support: Lecture will be com Module-4	nderstand different parameters and the project . power presentation for hin the realm of Emergence (swa thms). The concept ,various tools, ducted , through the use of powerf	nd constrain relevant rm , building

	Module-5
	ased theoretical investigations will also include works of architects who recursively use cooling in their structural form finding and generative design processes.
Teaching- Learning Process	ICT and Digital support: Lecture will be conducted , through the use of power point presentation
ssessment	Details (both CIE and SEE)
ninimum passi	of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. Th ng mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the re of SEE . A student shall be deemed to have satisfied the academic requirements and earned the

minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

Continuous Internal Evaluation will be based on Assignments, Tests and Term Paper submission.

Semester End Examination:

Theory Examination shall be held for 3-hour duration, students are expected to answer FIVE full questions, one question from each module

Suggested Learning Resources:

Books

- Tschumi, Bernard ; Notations: Diagrams and Sequences Koolhaas, Rem ; Delirious New York: A Retroactive Manifesto for Manhattan, Fenton, Joseph , Pamphlet Architecture 11: Hybrid Buildings
- Woodbury, Robert ; Elements of Parametric Design, Routledge New York
- T schumi, Bernard ; Event Cities

Web links and Video Lectures (e-Resources):

- <u>https://www.researchgate.net/publication/282813761 Emergence in Architectu</u>
- <u>https://www.youtube.com/watch?v=f6ra024-ASY</u>
- <u>https://www.techtarget.com/searchenterprisedesktop/definition/cellular-automaton#:~:text=A%20cellular%20automaton%20(CA)%20is,the%20states%20of%20neighboring%20cells.</u>
- <u>https://www.re-thinkingthefuture.com/rtf-fresh-perspectives/a7137-fractal-geometry-in-architecture/</u>
- https://www.sciencedirect.com/topics/engineering/swarmintelligence#:~:text=Swarm%20intelligence%20(SI)%20is%20a,movement%20of%20birds%20and%2 0fish.

Skill Development Activities Suggested

The sessional work will be in the form of exercises that are based on generative processes using algorithmic tools available in grasshopper plugins and to understand its use in architectural design. The submission will also include research reports and theoretical presentations to explore the systematic investigation in design processes using algorithmic tools.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	Students should be able to synthesize the knowledge they have acquired throughout the year.	L2
CO2	The students will be familiar with associated concepts of algorithmic architecture and its application to architectural design research	L3
C03	Advanced their knowledge on contemporary architectural discourse in close relation to the design task.	L3
C04	To understand the comprehensive design , of a design project	L4
C05	To establish new ways of thinking about design and fabrication, professional practice and its cultural impact.	L4

Program Outcome of this program. (CPM)

Sl. No.	Description	POs
1	Decoding the architectural design process as a collaborative, iterative and evolutionary vector framework	
2	The course/project goal is to increase the student's knowledge in this area/field and skills/knowledge in the field of architecture in general	PO2
3	The students will enter the project with varying degrees of knowledge/skills and will subsequently end up at different levels at the end of the course/project.	P03
4	The individual student must show an increase in the particular skills/knowledge offered and in the field of architecture in general	PO4
5	A framework is proposed as a disciplinary bridge to enable the team members to collaboratively identify and employ appropriate processes to implement morphogenetic IBs	P05

Mapping of COS and POS

	P01	P02	P03	P04	P05
CO1	M	Μ	Н	H	M
CO2	M	Μ	L	H	M
CO3	M	Μ	M	H	M
CO4	L	М	Μ	H	L
CO5	М	М	L	Н	Μ

H – High , M – Medium, L - Low

		DIGITAL FABRICATIO	N & CONSTRUCTION II	
Course Code		MDAC204	CIE Marks	50
Teaching Hours	s/Week (L:P:SDA)	02:00:02	Term work	50
Total Hours of	Pedagogy	4	Total Marks	100
Credits		3	Exam Hours	-
capacities	ent the Contempora s to facilitate experim atrinsic properties o	entation & investigation in m	uilding & construction domain v naterial informed design. The focus beneficial for iterative morphol	s is to expl
		Module- 1		
intrinsic prope	rties are studied and	recorded	al wherein in-depth study of the	
Teaching- Learning Process	ICT and Digital presentation	support : Lecture will be cond	ducted , through the use of powerp	oint
	L	Module-2		
Teaching- Learning Process	ICT and Digital presentation		ducted , through the use of powerp	oint
		Module-3		
	ments based on spec		ogue experiments is further used f the materials that are investigat	to augme
Teaching- Learning Process	ICT and Digital presentation	support: Lecture will be conc	ducted , through the use of powerp	ed during
	-	support: Lecture will be cond Module-4	ducted , through the use of powerp	ed during t
Learning Process Fundamental of transformation	presentation oncepts of geometr s, freeform surface	Module-4	nates, projections, Boolean opera	ed during t oint tions, forn
Learning Process Fundamental of transformation	presentation oncepts of geometr s, freeform surface scretization and mes	Module-4 ic modeling: Spatial coordin creation, surface developm shing, digital prototyping and	nates, projections, Boolean opera	ed during t oint tions, forn architectu
Learning Process Fundamental of transformation applications, di Teaching- Learning	presentation concepts of geometr s, freeform surface scretization and mes	Module-4 ic modeling: Spatial coordin creation, surface developm shing, digital prototyping and	nates, projections, Boolean operations aimed at lent and deformations aimed at l geometry reconstruction.	ed during t oint tions, forn architectu

Parametric modeling techniques and tools: Tools that are available to model design parametrically will be introduced in this class to illustrate the construction of geometrical relationships among complex shapes. The lectures will focus on hands-on techniques that can be applied to the design process, to extend the efficiency and productivity of work during the process.

Teaching-	ICT and Digital support: Lecture will be conducted , through the use of powerpoint
Learning	presentation
Process	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

Continuous Internal Evaluation will be based on Assignments, Tests and Term Paper submission.

Semester End Examination:

Theory Examination shall be held for 3-hour duration, students are expected to answer FIVE full questions, one question from each module

Suggested Learning Resources:

Books

- Peter Brandon; Emerging Paradigms and Models in Digital Design Performance-Based Architectural Design
- Michael Hensel ; Performance-Oriented Architecture: Rethinking Architectural Design and the Built Environment
- Stanney K M ; Handbook Of Virtual Environments : Design Implementation And Applications
- Braun ; Masterpieces: Performance Architecture + Design
- IncPadt; Introduction to the Ansys Parametric Design Language : A Guide to the Ansys Parametric Design Language

Web links and Video Lectures (e-Resources):

- https://www.youtube.com/watch?v=6meHDZMIp-I
- https://www.youtube.com/watch?v=WgvGv8OceLA
- https://www.youtube.com/watch?v=if8verABo2g

Skill Development Activities Suggested

The sessional work will include in-depth documentation of material experimentation that will specifically include intrinsic material properties documentation through demonstrative results, conversion of material properties into the digital medium and iterative digital explorations with reductive material parameters. The documentation will have material experimentation and prototypical models.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	To characterize central technology in fabrication	L2
C02	Interpret the different concepts and transfer to models	L3
CO3	To Critically review and assess the introduction and shift to digital fabrication in manufacturing organizations.	L3
C04	To demonstrate the use of fabrication in computational design	L4
C05	students will be able to better understand the concepts , for tool aided design	L4

Program Outcome of this program. (CPM)

Sl. No.	Description	POs
1	Assess what type or combinations of types of digital fabrication technologies that are appropriate for the task at hand.	P01
2	Encompass the ability to work in collaboration with interdisciplinary teams.	P02
3	Critically review and assess the introduction and shift to digital fabrication	P03
4	Analyze organizational implications of digital fabrication.	P04
5	Assess what type or combinations of types of digital fabrication technologies that are appropriate for the task at hand.	P05

Mapping of COS and POS

	P01	P02	P03	P04	P05
CO1	L	Μ	Μ	M	H
CO2	L	L	Μ	M	Н
CO3	L	Μ	Μ	M	M
CO4	M	М	L	H	Μ
CO5	Μ	Μ	Μ	Н	Н

H – High , M – Medium, L - Low

<u> </u>		ADVANCED COMPUTA	ATIONAL METHODS	
Course Code		MDAC206	CIE Marks	50
Teaching Hour	s/Week (L:P:SDA)	00:02:01	Viva Marks	50
Total Hours of		3	Total Marks	100
Credits		3	Exam Hours	-
To establ achieve a		veen the design ambitions ar	architectural design decisions. E Id the physical simulations within	
		Module- 1		
	lel to evaluate its perf	formance for various factors	ducing physical parameters into necessary for the performance of ducted , through the use of powerp	the buildin
Process	F			
	·	Module-2		
material prope	orties.		heir structural, environmental, th	
material prope	orties.		heir structural, environmental, th ducted , through the use of powerp	
material prope Teaching- Learning	ICT and Digital			
material prope Teaching- Learning Process To facilitate th parameters int	is students are intro o the digitally generation	support: Lecture will be cond Module-3 oduced to contemporary sof ted model to evaluate its per ral stability checks, computa		cing physi ese softwar llysis, therr
material prope Teaching- Learning Process To facilitate th parameters int aid the student analysis, etc. Teaching- Learning	Tries. ICT and Digital presentation is students are intro- o the digitally genera ts to perform structu ICT and Digital	support: Lecture will be cond Module-3 oduced to contemporary sof ted model to evaluate its per ral stability checks, computa support: Lecture will be cond	ducted , through the use of powerp Twares that are capable of induc formance for various factors. The ational fluid dynamics (CFD) ana	cing physi ese softwar llysis, therr
material prope Teaching- Learning Process To facilitate th parameters int aid the student analysis, etc. Teaching- Learning	Tries. ICT and Digital presentation is students are intro- o the digitally genera ts to perform structu ICT and Digital	support: Lecture will be cond Module-3 oduced to contemporary sof ted model to evaluate its per ral stability checks, computa	ducted , through the use of powerp Twares that are capable of induc formance for various factors. The ational fluid dynamics (CFD) ana	cing physi ese softwar llysis, therr
Teaching- Learning Process To facilitate th parameters int aid the student analysis, etc. Teaching- Learning Process These software practices or est	ICT and Digital presentation is students are intro- to the digitally genera ts to perform structur ICT and Digital presentation	support: Lecture will be cond Module-3 oduced to contemporary sof ted model to evaluate its per ral stability checks, computa support: Lecture will be cond Module-4 as short seminars and releva	ducted , through the use of powerp Twares that are capable of induc formance for various factors. The ational fluid dynamics (CFD) ana ducted , through the use of powerp	cing physi cing physi ese softwar ilysis, therr point erent facult

	Module-5
	Application of the gained knowledge to design problems- to find the optimized solution / understanding of the
	parameters- using the different tools/ plugins to drive an optimized solution/ to understand the core
	structure - workflow of parametric modelling

Teaching-	ICT and Digital support: Lecture will be conducted, through the use of powerpoint
Learning	presentation
Process	1

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

CIE marks shall be awarded by a committee comprising of Principal/Dean, PG Course Coordinator/HOD and Guide/Co-guide of the department. The CIE marks awarded for PSC (professional supportive course), shall be based on the progress of the student throughout the semester, presentation skills in seminars and submission of the report

Semester End Examination:

- The student needs to submit his/her report done throughout the semester, including the data collection for the Viva examination, at least one day prior to the Viva examination to the PG course coordinator/HOD.
- The Viva-voce will be evaluated by external examiners appointed by the University along with PG Course coordinator/ guide/ co-guide or an internal examiner.
- The viva-voce marks list generated is to be signed by both internal and external examiners and submitted to VTU in the sealed cover through the Principal of the institution.

Suggested Learning Resources:

Books

- Peter Brandon; Emerging Paradigms and Models in Digital Design Performance-Based Architectural Design
- Michael Hensel ; Performance-Oriented Architecture: Rethinking Architectural Design and the Built Environment
- Stanney K M ; Handbook Of Virtual Environments : Design Implementation And Applications
- Braun ; Masterpieces: Performance Architecture + Design
- IncPadt; Introduction to the Ansys Parametric Design Language : A Guide to the Ansys Parametric Design Language

Web links and Video Lectures (e-Resources):

- <u>https://www.youtube.com/watch?v=6meHDZMJp-I</u>
- https://www.youtube.com/watch?v=WgvGv80ceLA
- https://www.youtube.com/watch?v=if8verABo2g

Skill Development Activities Suggested

The students will be asked to make presentations about the role of performance based design using a specific simulation tool that they have learnt in the due course introduced to them. Through small exercises the students will apply their parametric knowledge and performance assessment to a building typology. Students are expected to submit detailed reports of the tutorials they undertook with appropriate analysis of the results.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	Students should be able to synthesize the knowledge they have acquired throughout the year.	L2
C02	The students will be familiar with associated concepts of basic protocols in sensor networks	L3
CO3	Understand the core structures and workflows of parametric modeling	L3
C04	Manipulate complex data flows toward desired design outcomes	L4
C05	Become familiar with program flow and geometry manipulation in Rhino	L4

Program Outcome of this program. (CPM)

Sl. No.	Description	POs
1	Possess the critical skills necessary to question the limits and biases of a software interface.	P01
2	Encompass the ability to work in collaboration with interdisciplinary teams.	P02
3	Critically review and assess the software interface and apply to design	P03
4	To develop a sensibility for generative modeling uniquely	P04
5	To able the students in the better understanding of tools that aid in computational design	PO5

Mapping of COS and POS

	P01	P02	P03	P04	P05
CO1	M	M	Н	H	M
CO2	M	M	L	M	Н
CO3	H	Н	M	L	Н
CO4	M	M	Μ	M	Н
CO5	L	L	L	Μ	Н

H – High , M – Medium, L - Low

Semester-II

BIOMIMETIC ARCHITECTURE					
Course Code	MDAE215A	CIE Marks	100		
Teaching Hours/Week (L:P:SDA)	02:00:02	Term work	-		
Total Hours of Pedagogy	4	Total Marks	100		
Credits	3	Exam Hours	-		
Credits Course Learning objectives:	3	Exam Hours			
This course examines how bio		sign can address environmental o lications using, computational to			

	Module- 1
principles and will study way	examine how natural organisms can be models for architectural design using Biomimicr morphogenetic parametric design. Starting from the beauty of nature as inspiration, student rs that architects and designers are examining nature's forms, mechanisms and systems t ples for approaching design problems.
Teaching- Learning Process	ICT and Digital support : Lecture will be conducted , through the use of powerpoint presentation
	Module-2
abstraction.Bio	baches will include processes of observation, description, analysis, metaphor and mimicry and systems thinking provide a framework for looking at skins, bones and growth as designing static structures and dynamic systems.
Teaching- Learning Process	<i>ICT and Digital support</i> : Lecture will be conducted , through the use of powerpoint presentation
	Module-3
Teaching- Learning Process	netic constructions. Examples will span scales from landscapes, architecture and product design ICT and Digital support : Lecture will be conducted , through the use of powerpoint presentation
	Module-4
	tudy and analyse in detail, different buildings that have been modelled under bio mimicry eg al Stadium, National Aquatic Centre, Council House2 , Milwaukee Art Muesem , The Gherkin
Beijing Nationa	tudy and analyse in detail, different buildings that have been modelled under bio mimicry eg al Stadium, National Aquatic Centre, Council House2 , Milwaukee Art Muesem , The Gherkin
Beijing Nationa Eastgate Centro Teaching- Learning	tudy and analyse in detail, different buildings that have been modelled under bio mimicry eg al Stadium, National Aquatic Centre, Council House2 , Milwaukee Art Muesem , The Gherkin e . ICT and Digital support: Lecture will be conducted , through the use of powerpoint
Beijing Nationa Eastgate Centre Teaching- Learning Process Students can o	tudy and analyse in detail, different buildings that have been modelled under bio mimicry eg al Stadium, National Aquatic Centre, Council House2 , Milwaukee Art Muesem , The Gherkin e . ICT and Digital support: Lecture will be conducted , through the use of powerpoint presentation

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

CIE marks shall be awarded by a committee comprising of Principal/Dean, PG Course Coordinator/HOD and Guide/Co-guide of the department. The CIE marks awarded for PSC (professional supportive course), shall be based on the progress of the student throughout the semester, presentation skills in seminars and submission of the report

Semester End Examination:

- The student needs to submit his/her report done throughout the semester, including the data collection for the Viva examination, at least one day prior to the Viva examination to the PG course coordinator/HOD.
- The Viva-voce will be evaluated by external examiners appointed by the University along with PG Course coordinator/ guide/ co-guide or an internal examiner.
- The viva-voce marks list generated is to be signed by both internal and external examiners and submitted to VTU in the sealed cover through the Principal of the institution.

Suggested Learning Resources:

Books

- Biomimetics: Biologically Inspired Technologies Ed. Yoseph Bar-Cohen,2005
- Biomimicry and Architecture Michael Pawlyn, 2011
- Bionics in Action: The Design Work of Franco Lodato, Motorola Jens Bernsen, 2004
- Cat's Paws and Catapults: Mechanical Worlds of Nature and People Steven Vogel, 1998
- The Gecko's Foot: Bio-inspiration, Engineering New Materials and Devices from Nature. Peter Forbes, 2005

Web links and Video Lectures (e-Resources):

- https://www.greenbiz.com/vid
- https://www.youtube.com/wat
- <u>https://cei.ece.cornell.edu/new</u>
- http://algorithmicbotany.org/

Skill Development Activities Suggested

Assignment will be in the form of in depth documentation subsequent to the study of a topic related to any one of the subject based on availability of experts, which will be presented by the student in the form of a documented report, and a presentation on the same.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	Ability to address an environmental design problem by using a natural analogy, natural processes, or natural material properties.	L2
C02	Understanding of bio-inspired methods for sustainable design	L3
CO3	Ability to use parametric design software to generate form variants	L3
C04	Understanding of emergent possibilities in digital design, analysis and fabrication	L4
C05	students will be able to better understand the concepts , for tool aided design	L4

Program Outcome of this program. (CPM)

Sl. No.	Description	POs
1	The generation of digital tools makes it possible to use parametric design as a way of evolving new information systems, new ways of producing building components and architecture.	P01
2	The course/project goal is to increase the student's knowledge in this area/field and skills/knowledge in the field of architecture in general	P02
3	The students will enter the project with varying degrees of knowledge/skills and will subsequently end up at different levels at the end of the course/project.	P03
4	The individual student must show an increase in the particular skills/knowledge offered and in the field of architecture in general	PO4
5	To critically interpret and understand biomimetic design	P05

Mapping of COS and POS

	P01	P02	P03	P04	P05
C01	L	L	М	M	М
CO2	H	Μ	Μ	M	Μ
CO3	M	Μ	Μ	M	Н
CO4	L	L	Μ	M	Н
CO5	L	L	Μ	Μ	Μ

H – High, M – Medium, L - Low

Semester-II DIGITAL HERITAGE PRESERVATION **Course Code** MDAE215B **CIE Marks** 100 02:00:02 Teaching Hours/Week (L:P:SDA) Term work -Total Hours of Pedagogy 4 100 **Total Marks** Credits 3 **Exam Hours** -**Course Learning objectives:** Digital heritage preservation involves the use of advanced technologies to document, conserve, and promote cultural heritage in digital formats. It encompasses techniques like 3D scanning, photogrammetry, and digital imaging to create accurate representations of artifacts, sites, and monuments. This digital data not only preserves cultural significance but also facilitates wider accessibility, education, and research opportunities. Key considerations include data integrity, long-term preservation strategies, ethical practices, and the integration of digital archives with global heritage conservation efforts Module-1 **Overview-** Definition and significance of digital heritage preservation, Historical context and evolution of digital technologies in heritage conservation, Key Concepts- Principles of cultural heritage conservation and documentation ,Role of digital technologies (e.g., 3D scanning, GIS) in preservation efforts Case Studies -Examples of successful digital heritage preservation projects worldwide, Challenges and ethical considerations in digital conservation **ICT and Digital support**: Lecture will be conducted, through the use of powerpoint **Teaching-**Learning presentation Process **Module-2** Digital documentation techniques - Photogrammetry and 3D Scanning- Principles and methods of photogrammetry for heritage documentation, Use of laser scanning and structured light scanning technologies, mage-based modeling and texture mapping -Data Processing and Management- Processing and organizing digital data for preservation, Standards for metadata and data interoperability in heritage contexts case studies of the same **ICT and Digital support**: Lecture will be conducted, through the use of powerpoint **Teaching-**Learning presentation Process **Module-3** Digital reconstruction and visualization - Virtual Reconstruction- Techniques for reconstructing heritage sites and artifacts digitally -Interactive Platforms- Development of interactive digital exhibits and online platforms/ Creating immersive experiences for public engagement -Case Study Analysis of a digital reconstruction project, focusing on its accuracy and educational impact

Teaching- Learning Process	<i>ICT and Digital support</i> : Lecture will be conducted , through the use of powerpoint presentation
	Module-4
and disaster rec sensitivities ,	ration Strategies- Long-term preservation strategies for digital heritage data, Risk managemen overy planning, Access and Ethics Providing access to digital archives while respecting cultura ntellectual property rights and ethical considerations in digital heritage. Evaluating the a digital archive in preserving and disseminating heritage information
Teaching- Learning Process	ICT and Digital support : Lecture will be conducted , through the use of powerpoint presentation
	Module-5
Use of blockcha Strategies for n	nologies- Role of artificial intelligence (AI) and machine learning in heritage preservation , in for provenance and authentication of digital artifacts - sustainability and adaptablity naintaining and updating digital preservation initiatives, Adapting to technological and changing preservation needs
Teaching- Learning	ICT and Digital support : Lecture will be conducted , through the use of powerpoint presentation

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

CIE marks shall be awarded by a committee comprising of Principal/Dean, PG Course Coordinator/HOD and Guide/Co-guide of the department. The CIE marks awarded for PSC (professional supportive course), shall be based on the progress of the student throughout the semester, presentation skills in seminars and submission of the report

Semester End Examination:

- The student needs to submit his/her report done throughout the semester, including the data collection for the Viva examination, at least one day prior to the Viva examination to the PG course coordinator/HOD.
- The Viva-voce will be evaluated by external examiners appointed by the University along with PG Course coordinator/ guide/ co-guide or an internal examiner.
- The viva-voce marks list generated is to be signed by both internal and external examiners and submitted to VTU in the sealed cover through the Principal of the institution.

Suggested Learning Resources: Books

- https://www.researchgate.net/publication/337361090_Digital_Heritage
- https://unesdoc.unesco.org/ark:/48223/pf0000130071
- https://www.isprs.org/proceedings/xxxvi/5-c53/papers/FP104.pdf

Web links and Video Lectures (e-Resources):

- Applying Digital Documentation for Sustainable Heritage Preservation and Management
- <u>3D digital documentation in conservation, preservation, & promotion of Ireland's cultural heritage</u>

Skill Development Activities Suggested

Assignment will be in the form of in depth documentation subsequent to the study of a topic related to any one of the subject based on availability of experts, which will be presented by the student in the form of a documented report, and a presentation on the same.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	Explain the evolution of robotic systems	L2
C02	Understand robot configuration, structures, basic components, workspace and generations of robots	L2
CO3	Associate the relation between kinematic linkages and robot kinematics	L2
C04	Understand robot dynamics	L2
C05	Understand robot characteristics with their control systems /application of robots in the industry	L4

Program Outcome of this program. (CPM)

Sl. No.	Description	POs
1	The generation of digital tools makes it possible to use parametric design as a way of evolving new information systems, new ways of producing building components and architecture.	P01
2	The course/project goal is to increase the student's knowledge in this area/field and skills/knowledge in the field of architecture in general	PO2
3	The students will enter the project with varying degrees of knowledge/skills and will subsequently end up at different levels at the end of the course/project.	PO3
4	The individual student must show an increase in the particular skills/knowledge offered and in the field of architecture in general	PO4
5	To critically interpret and understand product design+robotics	PO5

Mapping of COS and POS

	P01	P02	P03	P04	P05
C01	L	Μ	Μ	M	Н
CO2	М	М	L	M	Н
CO3	0	L	М	L	Μ
CO4	L	L	М	M	Μ
CO5	L	L	Μ	Н	Н

H – High , M – Medium, L - Low

		OPTIMIZING BUILT S	TRUCTURES	
Course Code		MDAE215C	CIE Marks	100
Teaching Hour	s/Week (L:P:SDA)	02:00:02	Term work	-
Total Hours of		4	Total Marks	100
Credits	0.00	3	Exam Hours	-
Course Learni	ing objectives:			
Grasshop	oper for Rhino, This p re parameters like the	project extends the system lo e microclimate, social and ty	gies and its optimization tech ogics to a larger and more comple pological organizations of an urba	ex piece of
		Module- 1		
Problem Form	ulation and Setup- Sy	ystem characterization:		
		ojectives, design variables, co	onstraints, subsystems	
	System-level coupl	,		
	Examples of MSDO	-		
	*	niques in design optimization	n	
	del development			
Teaching- Learning	ICT and Digital	support: Lecture will be con	ducted , through the use of powerp	oint
-	presentation			
-	presentation	Module-2		
Process				
Process Optimization	and Search Methods-	- Optimization and explorati	on techniques:	
Process Optimization 1.	and Search Methods- Review of linear ar	- Optimization and explorati nd nonlinear programming	-	
Process Optimization 1. 2.	and Search Methods Review of linear ar Heuristic techniqu	- Optimization and explorati nd nonlinear programming es: genetic algorithms simul	ated annealing, Tabu search	
Process Optimization 1.	and Search Methods- Review of linear ar Heuristic techniqu Design Space Explo	- Optimization and explorati nd nonlinear programming es: genetic algorithms simul oration: Design of Experime	ated annealing, Tabu search nts (DOE): Full factorial search, pa	rameter
Process Optimization 1. 2. 3.	and Search Methods- Review of linear ar Heuristic techniqu Design Space Explo study, Taguchi/ort	- Optimization and explorati nd nonlinear programming es: genetic algorithms simul oration: Design of Experime thogonal arrays, latin hypero	ated annealing, Tabu search nts (DOE): Full factorial search, pa cubes	rameter
Process Optimization 1. 2. 3.	and Search Methods- Review of linear ar Heuristic techniqu Design Space Explo study, Taguchi/ort	- Optimization and explorati nd nonlinear programming es: genetic algorithms simul oration: Design of Experime thogonal arrays, latin hypero	ated annealing, Tabu search nts (DOE): Full factorial search, pa	rameter
Process Optimization 1. 2. 3. 4.	and Search Methods- Review of linear ar Heuristic techniqu Design Space Explo study, Taguchi/ort Mixed integer prog	- Optimization and explorati nd nonlinear programming es: genetic algorithms simul oration: Design of Experime thogonal arrays, latin hypero gramming (application to hu	ated annealing, Tabu search nts (DOE): Full factorial search, pa cubes	
Process Optimization 1. 2. 3. 4. Teaching- Learning	and Search Methods- Review of linear ar Heuristic techniqu Design Space Explo study, Taguchi/ort Mixed integer prog	- Optimization and explorati nd nonlinear programming es: genetic algorithms simul oration: Design of Experime thogonal arrays, latin hypero gramming (application to hu	ated annealing, Tabu search nts (DOE): Full factorial search, pa cubes b spoke / network problems)	
Process Optimization 1. 2. 3.	and Search Methods- Review of linear ar Heuristic techniqu Design Space Explo study, Taguchi/ort Mixed integer prog	- Optimization and explorati nd nonlinear programming es: genetic algorithms simul oration: Design of Experime thogonal arrays, latin hypero gramming (application to hu	ated annealing, Tabu search nts (DOE): Full factorial search, pa cubes b spoke / network problems)	
Process Optimization 1. 2. 3. 4. Teaching- Learning	and Search Methods- Review of linear ar Heuristic techniqu Design Space Explo study, Taguchi/ort Mixed integer prog	- Optimization and explorati nd nonlinear programming es: genetic algorithms simul oration: Design of Experime thogonal arrays, latin hypero gramming (application to hu support: Lecture will be con	ated annealing, Tabu search nts (DOE): Full factorial search, pa cubes b spoke / network problems)	
Process Optimization 1. 2. 3. 4. Teaching- Learning Process	and Search Methods- Review of linear ar Heuristic techniqu Design Space Explo study, Taguchi/ort Mixed integer prog	- Optimization and explorati nd nonlinear programming es: genetic algorithms simul oration: Design of Experime thogonal arrays, latin hypero gramming (application to hu support: Lecture will be con Module-3	ated annealing, Tabu search nts (DOE): Full factorial search, pa cubes b spoke / network problems)	
Process Optimization 1. 2. 3. 4. Teaching- Learning Process Multiobjective	and Search Methods- Review of linear ar Heuristic techniqu Design Space Explo study, Taguchi/ort Mixed integer prog ICT and Digital presentation	- Optimization and explorati nd nonlinear programming es: genetic algorithms simul oration: Design of Experime thogonal arrays, latin hypero gramming (application to hu support: Lecture will be con <u>Module-3</u> enges	ated annealing, Tabu search nts (DOE): Full factorial search, pa cubes b spoke / network problems)	
Process Optimization 1. 2. 3. 4. Teaching- Learning Process Multiobjective 1. Multio	and Search Methods- Review of linear ar Heuristic techniqu Design Space Explo study, Taguchi/ort Mixed integer prog ICT and Digital presentation	- Optimization and explorati nd nonlinear programming es: genetic algorithms simul oration: Design of Experime thogonal arrays, latin hypero gramming (application to hu support: Lecture will be con <u>Module-3</u> lenges n:	ated annealing, Tabu search nts (DOE): Full factorial search, pa cubes b spoke / network problems)	
Process Optimization 1. 2. 3. 4. Teaching- Learning Process Multiobjective 1. Multio 1.	and Search Methods- Review of linear ar Heuristic techniqu Design Space Explo study, Taguchi/ort Mixed integer prog <i>ICT and Digital</i> <i>presentation</i>	- Optimization and explorati nd nonlinear programming les: genetic algorithms simul oration: Design of Experime thogonal arrays, latin hypero gramming (application to hu support: Lecture will be con <u>Module-3</u> lenges n: imization	ated annealing, Tabu search nts (DOE): Full factorial search, pa cubes b spoke / network problems)	
Process Optimization 1. 2. 3. 4. Teaching- Learning Process Multiobjective 1. Multio 1. 2.	and Search Methods- Review of linear ar Heuristic techniqu Design Space Explo study, Taguchi/ort Mixed integer prog ICT and Digital presentation	- Optimization and explorati nd nonlinear programming es: genetic algorithms simul oration: Design of Experime thogonal arrays, latin hypero gramming (application to hu support: Lecture will be con <u>Module-3</u> lenges n: imization lominance	ated annealing, Tabu search nts (DOE): Full factorial search, pa cubes b spoke / network problems)	
Process Optimization 1. 2. 3. 4. Teaching- Learning Process Multiobjective 1. Multio 1. 2. 3.	and Search Methods- Review of linear ar Heuristic techniqu Design Space Explo study, Taguchi/ort Mixed integer prog ICT and Digital presentation	- Optimization and explorati nd nonlinear programming es: genetic algorithms simul oration: Design of Experime thogonal arrays, latin hypero gramming (application to hu support: Lecture will be com <u>Module-3</u> lenges n: imization dominance utation	ated annealing, Tabu search nts (DOE): Full factorial search, pa cubes b spoke / network problems)	
Process Optimization 1. 2. 3. 4. Teaching- Learning Process Multiobjective 1. Multio 1. 2. 3. 4.	and Search Methods- Review of linear ar Heuristic techniqu Design Space Explo study, Taguchi/ort Mixed integer prog <i>ICT and Digital</i> <i>presentation</i> e and Stochastic Chall objective optimization Weighted sum opti Weak and strong d Pareto front compu- Goal programming	- Optimization and explorati nd nonlinear programming es: genetic algorithms simul oration: Design of Experime thogonal arrays, latin hypero gramming (application to hu support: Lecture will be con <u>Module-3</u> lenges n: imization lominance utation g and isoperformance	ated annealing, Tabu search nts (DOE): Full factorial search, pa cubes b spoke / network problems)	
Process Optimization 1. 2. 3. 4. Teaching- Learning Process Multiobjective 1. Multio 1. 2. 3.	and Search Methods- Review of linear ar Heuristic techniqu Design Space Explo study, Taguchi/ort Mixed integer prog <i>ICT and Digital</i> <i>presentation</i> e and Stochastic Chall objective optimization Weighted sum opti Weak and strong d Pareto front compu- Goal programming Physical Programm	- Optimization and explorati nd nonlinear programming es: genetic algorithms simul oration: Design of Experime thogonal arrays, latin hypero gramming (application to hu support: Lecture will be con <u>Module-3</u> lenges n: imization lominance utation g and isoperformance ning	ated annealing, Tabu search nts (DOE): Full factorial search, pa cubes b spoke / network problems)	

Teaching- Learning Process	<i>ICT and Digital support</i> : Lecture will be conducted , through the use of powerpoint presentation
	Module-4
Implementati	on Issues and Real World Applications System assessment and extensions:
1	. What is optimality?
2	2. Design for value: including lifecycle costing
	3. Optimizing product families and platforms
Teaching-	ICT and Digital support: Lecture will be conducted , through the use of powerpoint
Learning Process	presentation
	Module-5
Implementati	on issues:
1	. Model reduction
2	2. Approximation techniques: response surfaces, kriging, neural networks
3	B. Concurrent design
Reference stu	dies of buildings of students choice is encouraged - to better understand the architectural aspec
Teaching-	ICT and Digital support: Lecture will be conducted , through the use of powerpoint
Learning	presentation

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

CIE marks shall be awarded by a committee comprising of Principal/Dean, PG Course Coordinator/HOD and Guide/Co-guide of the department. The CIE marks awarded for PSC (professional supportive course), shall be based on the progress of the student throughout the semester, presentation skills in seminars and submission of the report

Semester End Examination:

- The student needs to submit his/her report done throughout the semester, including the data collection for the Viva examination, at least one day prior to the Viva examination to the PG course coordinator/HOD.
- The Viva-voce will be evaluated by external examiners appointed by the University along with PG Course coordinator/ guide/ co-guide or an internal examiner.
- The viva-voce marks list generated is to be signed by both internal and external examiners and submitted to VTU in the sealed cover through the Principal of the institution.

Suggested Learning Resources:
 Suggested Learning Resources: Books DNagrath and Mittal, "Robotics and Control", Tata McGraw-Hill, 2003 Spong and Vidhyasagar, "Robot Dynamics and Control", John Wiley and sons, 2008 Fu. K.S, Gonzalez, R.C., Lee, C.S.G, Robotics, control, sensing, Vision and Intelligence, McGraw Hill International, 1987 Harry Asada & Slottine "Robot Analysis& Control", Wiley Publications, 2014
Web links and Video Lectures (e-Resources): • https://www.researchgate.net/publication/329132291 Product Design Process and Methods • https://nzifst.org.nz/resources/creatingnewfoods/documents/CreatingNewFoodsCh5.pdf • https://www.researchgate.net/publication/283452773_Introduction_to_Robot_Design
Skill Development Activities Suggested
Assignment will be in the form of in depth documentation subsequent to the study of a topic related to any one of the subject based on availability of experts, which will be presented by the student in the form of a documented report, and a presentation on the same.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	To analyse area of analysis and optimization of multidisciplinary systems during the "conceive" and "design" phases	L2
CO2	Develops and codifies a prescriptive approach to multidisciplinary modeling and quantitative assessment of new or existing system/product architectures	L2
CO3	Rationalize and quantify a system architecture or product design problem by selecting appropriate objective functions, design parameters and constraints	L2
CO4	Subdivide a complex system into smaller disciplinary models, manage their interfaces and reintegrate them into an overall system model	L3
C05	To analyse and study buildings to understand the different generations / survival of the fittest / optimised results	L3

Program Outcome of this program. (CPM)

Sl. No.	Description				
1	perform a critical evaluation and interpretation of analysis and optimization results, including sensitivity analysis and exploration of performance, cost and risk tradeoffs	P01			
2	The course/project goal is to increase the student's knowledge in this area/field and skills/knowledge in the field of architecture in general	PO2			
3	The students will enter the project with varying degrees of knowledge/skills and will subsequently end up at different levels at the end of the course/project.	P03			
4	The individual student must show an increase in the particular skills/knowledge offered and in the field of architecture in general	P04			
5	be familiar with the basic concepts of multiobjective optimization, including the conditions for optimality	P05			

Mapping of COS and POS

	P01	P02	P03	P04	P05
C01	L	Μ	М	Н	Н
CO2	M	L	Μ	M	Н
CO3	L	Μ	L	M	М
CO4	L	L	Μ	M	Н
CO5	L	L	М	Μ	Μ

H – High, M – Medium, L - Low