Artificial Intelligence				
Course Code	MCS101	CIE Marks	50	
Teaching	3:0:2	SEE	50	
Hours/Week		Marks		
(L:P:SDA)				
Total Hours of	50	Total	100	
Pedagogy		Marks		
Credits	03	Exam	03	
		Hours		
с і і				

Course Learning Objectives:

- Define the foundational concepts of artificial intelligence and key problem-solving techniques.
- Explain the knowledge representation and reasoning techniques to solve complex problems in AI systems.
- Use machine learning algorithms to evaluate their performance in real-world applications.
- Build the applications of natural language processing and robotics to enhance human-computer interaction.
- Explore the ethical considerations and societal implications of AI technologies.

Module-1

Module 1:Introduction to Artificial Intelligence and Problem Solving, Definition and scope of AI, History and evolution of AI, Types of AI: Narrow AI vs. General AI, Problem formulation and problem-solving techniques, Search algorithms: Uninformed and informed search strategies, Heuristic search and constraint satisfaction problems.

Teaching	Chalk and talk/PPT/case study/web content
Learning	
Process	

Module-2

Module 2: Knowledge Representation and Reasoning, Types of knowledge representation, Propositional logic and first-order logic ,Semantic networks and frames, Ontologies and their applications, Deductive and inductive reasoning, Rule-based systems and non-monotonic reasoning, Probabilistic reasoning and Bayesian networks.

Teaching-				
Learni	Chalk and talk/PPT/case study/web content			
ng				
Process				
Module-3				

Module 3: Machine Learning, Introduction to machine learning, Supervised, unsupervised, and reinforcement learning, Common algorithms: Decision trees, SVM, neural networks Evaluation metrics for machine learning models ,Practical applications of machine learning in AI systems.

Teaching	Chalk and talk/PPT/case study/web content
Learning	
Process	

Module-4

Module 4: Natural Language Processing and Robotics, Basics of natural language processing (NLP), Text processing and language models, Sentiment analysis and language generation, Robotics fundamentals and sensor technologies, Robot kinematics, control, and applications of AI in robotics.

Teaching	Chalk and talk/PPT/case study/web content			
Learning				
Process				
Module-5				

Module 5: Ethical and Societal Implications of AI, Ethical considerations in AI development ,AI and job displacement ,Privacy concerns and data security, Bias and fairness in AI algorithms, Accountability and transparency in AI systems, The role of government and regulation in AI, Public perception and trust in AI technologies, Future of AI and its impact on society.

Teaching	Chalk and talk/PPT/case study/web content
-	
Lear	
ning	
Proce	
SS	

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 20 Marks
- 2. Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the Outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module.

Suggested Learning Resources:

Text Books:

- 1. Artificial Intelligence: A Modern Approach" by Stuart Russell and Peter Norvig, 4th Edition (2021)
- 2. "Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville third Edition.

Reference Books:

 "Pattern Recognition and Machine Learning" by Christopher M. Bishop Edition: fourth Edition (2020) "Artificial Intelligence: Foundations of Computational Agents" by David L. Poole and Alan K. Mackworth Edition: third Edition (2021).

Web links and Video Lectures (e-Resources):

- https://cs221.stanford.edu
- https://www.kaggle.com/learn/machine-learning
- https://www.youtube.com/playlist?list=PLkDaE6sXhPqQ5s2cW2g1iGgC4eD9W6xZ2
- https://www.youtube.com/playlist?list=PLD6B6F0A3B1D4D3D8A7E3C5E8A7B2E0C

Skill Development Activities Suggested

• The students with the help of the course teacher can take up relevant technical –activities which will enhance their skill. The prepared report shall be evaluated for CIE marks.

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

Sl. No.	Description	Blooms Level
CO1	Explain the foundational concepts of artificial intelligence, including its history, types, and key problem-solving techniques.	L2
CO2	Apply knowledge representation and reasoning techniques to solve complex problems in AI systems.	L3
CO3	Implement machine learning algorithms and evaluate their performance in real-world applications.	L2
CO4	Explore the principles and applications of natural language processing and robotics to enhance human-computer interaction.	L4

Mapping of COS and Pos						
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	x			х		
CO2			x		x	
CO3		х				
CO4	х					

Program Outcome of this course

SI.	Description	POs
No. 1	Demonstrate the ability to independently conduct research and development work to address practical engineering problems.	1PO1
2	Develop and deliver comprehensive technical presentations that effectively convey complex information to diverse audiences.	PO2
3	Exhibit mastery in the specialized study area, surpassing therequirements of a relevant bachelor's program.	PO3
4	Analyze engineering problems critically and apply appropriate techniques, skills, and modern tools to develop innovative solutions.	PO4
5	Collaborate effectively in teams while also functioning independently, recognizing opportunities for caree advancement and research.	rPO5
6	Cultivate a proactive approach to continuous learning andprofessional development in response to evolving technologicallandscapes.	gPO6

Course Code	Mxx102	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	4:0:2	SEE Marks	50
Total Hours of Pedagogy	50	Total Marks	100
Credits	03	Exam Hours	03
Course Learning objectives: 1. Explain the foundational cor	cepts of data science, including its	s history, signific	ance, and the data
science process.			
2. Apply statistical methods and datasets.	data analysis techniques to interpr	ret and draw insi	ghts from complex
3 Implement various machine	learning algorithms and assess the	pair parformanca	using appropriate
evaluation metrics in real-wor	Id scenarios.	len performance	using appropriate
4. Utilize data visualization too	ls and techniques to effectively co	mmunicate findir	ngs and insights to
diverse audiences.			
N	Iodule-1		
Module 1:Introduction to Data Science	and R Tool. Overview of Data Scie	ence Importance	of Data Science ir
Engineering, Data Science Process,	Data Types and Structures, Introduc	tion to R Program	nming, Basic Data
Manipulation in R, Simple programs us	ing R.Introduction to RDBMS: Defin	ition and Purpose	of RDBMS
Key Concepts: Tables, Rows, Columns	, and Relationships, SQL Basics: SEI	LECT, INSERT, U	JPDATE, DELETE
Teaching Chalk and talk/PPT/case	study/web content		
Learning Chank and tanor i freuse	study/web content		
Process			
N	Iodule-2		
Module 2: Linear Algebra for Data S	cience, Algebraic View, Vectors	and Matrices, Pr	coduct of Matrix &
Vector, Rank and Null Space, Solutions	s of Over determined Equations, Pseu	do inverse, Geom	etric View, Vectors
Teaching.	Decomposition:		
Learning Chalk and talk/PPT	Vcase study/web content		
Process	-		
N	Iodule-3		
Module 3: Statistical Foundations, De	scriptive Statistics, Notion of Probab	ility, Probability	Distributions
Matrix, Introduction to Hypothesis Test	ariate Normal Distributions, Mean, V ing, Confidence Intervals for Estimat	ariance, Covariar es.	ice, and Covariance
TeachingChalk and talk/PPT/case	study/web content		
Learning			
Process			
Ν	Iodule-4		
Module 4: Optimization and Data Scie	nce Problem Solving, Introduction to	Optimization	
Understanding Optimization Techniqu Science Problems.	es, Typology of Data Science Prob	lems, Solution F	ramework for Data
Teaching Chalk and talk/PPT/case	study/web content		
Learning			
Process	Indula 5		
Nodule 5: Regression and Classificati	on Techniques Linear Regression	Simple Lin	ear Regression and
Assumptions, Multivariate Linear	Regression, Model Assessment	and Variable Imp	portance, Subse

Selection, Classification Techniques, Classification using Logistic Regression.

Subset

Teaching-	Chalk and talk/PPT/case study/web content
Learning	
Process	

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

1. Three Unit Tests each of **20 Marks**

2. Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs The sum of three tests, two assignments/skill Development Activities, will be **scaled down to 50 marks**

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Text Books:

- 1. "Python for Data Analysis" by Wes McKinney, 2nd Edition (2018)
- 2. "Data Science from Scratch: First Principles with Python" by Joel Grus, 2nd Edition (2019)

Reference Books:

- 1. "An Introduction to Statistical Learning" by Gareth James, Daniela Witten, Trevor Hastie, and Robert Toshigami, 2nd Edition (2021)
- 2. "The Elements of Statistical Learning" by Trevor Hastie, Robert Toshigami, and Jerome Friedman, 2nd Edition (2009)
- "Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking" by Foster Provost and Tom Fawcett, 2nd Edition (2013)

Web links and Video Lectures (e-Resources):

https://www.coursera.org/specializations/jhu-data-science

https://www.kaggle.com/learn/data-science

https://www.edx.org/professional-certificate/harvardx-data-science

https://www.youtube.com/playlist?list=PL4cUxeGkcC9g1s4L6G8p8Fq5XK6Pq7b1k

Sl. No.	Description
1	Demonstrate the ability to independently conduct research anddevelopment work to address practical engi problems.
2	Develop and deliver comprehensive technical presentations that effectively convey complex information diverse audiences.
3	Exhibit mastery in the specialized study area, surpassing therequirements of a relevant bachelor's program.
4	Analyze engineering problems critically and apply appropriatetechniques, skills, and modern tools to dev innovative solutions.
5	Collaborate effectively in teams while also functioningindependently, recognizing opportunities for care advancement andresearch.
6	Cultivate a proactive approach to continuous learning andprofessional development in response to technologicallandscapes.
Skill Do	evelopment Activities Suggested The students with the help of the course teacher can take up relevant technical activities which will

enhance their skill. The prepared report shall be evaluated for CIE marks.

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

Sl. No.	Description		
		ms	
		Leve	
		1	
CO1	Explore the foundational concepts of data science, history, significance, and process.	L3	
CO2	Apply statistical methods and data analysis techniques to interpret and draw insights from complex datasets.	L3	
CO3	Implement various machine learning algorithms and assess their performance using appropriate evaluation metrics in real-world scenarios.	L2	

CO4	Utilize data visualization tools and techniques to effectively communicate findings and	L4
	insights to diverse audiences.	

Data Structures & Algorithms for Problem Solving					
Course Code		MCS103	CIE Marks	5	
				0	
Teaching Hou	ırs/Week	2:0:2	SEE Marks	5	
(L:P:SDA)				0	
Total Hours of Pedagog	şу	50	Total Marks	1	
				0	
				0	
Credits		03	Exam Hours	0	
				3	

Course Learning Objectives:

- To reduce development time and the resources required to maintain existing applications.
- To increase code reuse and provide a competitive advantage through effective use of data structures and algorithms.

Module-1

Search Trees: Two Models of Search Trees. General Properties and Transformations. Height of a Search Tree. Basic Find, Insert, and Delete. Returning from Leaf to Root. Dealing with Non unique Keys. Queries for the Keys in an Interval. Building Optimal Search Trees. Converting Trees into Lists. Removing a Tree. Balanced Search Trees: Height-Balanced Trees. Weight-Balanced Trees. (a, b)- And B-Trees. Red-Black Trees and

Trees of Almost	Optima	Height. Top-Down Rebalancing for Red-Black Trees.		
Teaching				
Learning	Chalk a	nd talk/PPT/web content		
Process				
		Module-2		
Tree Structures	for Sets	of Intervals. Interval Trees. Segment Trees. Trees for the Union of Intervals. Trees for		
Sums of Weigh	ted Inter	val. Trees for Interval-Restricted Maximum Sum Queries. Orthogonal Range Trees.		
Higher-Dimensi	onal Seg	ment Trees. Other Systems of Building Blocks. Range-Counting and the Semigroup		
Model. Kd-Tree	s and Re	lated Structures.		
Teaching-	CI 11			
Learning	Chalk	and talk/PP1/case study/web content		
Process				
	. ~ .	Module-3		
Heaps: Balance	d Search	Trees as Heaps. Array-Based Heaps. Heap-Ordered Trees and Half Ordered Trees.		
Leftist Heaps. S	kew He	aps. Binomial Heaps. Changing Keys in Heaps. Fibonacci Heaps. Heaps of Optimal		
Complexity. Do	ouble-En	ded Heap Structures and Multidimensional Heaps. Heap-Related Structures with		
Constant-Time	Updates.			
Teaching	Chalk and talk/PPT/case study/web content			
Learning				
Process		N 11 4		
		Module-4		
Graph Algorith	ns: Bell	man - Ford Algorithm; Single source shortest paths in a DAG; Johnson's Algorithm		
for sparse graph	s; Flow	networks and Ford-Fulkerson method; Maximum bipartite matching. Polynomials and		
the FFT: Repres	entation	of polynomials; The DFT and FFT; Efficient implementation of FFT.		
Teaching	Chalk a	nd talk/PPT/case study/web content		
Learning				
Process		Madula 5		
String Matching	Alaami	Moule-5		
Sumg-Matching	, Algoria	Dratt algorithm: Boyer Moore algorithms		
automata, Khuti	1-10101118	-rratt argontunn, boyer – moore argontunns.		
Teaching-		Chalk and talk/PPT/case study/web content		
Learning				
Process				

г

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of **20 Marks**
- 2. Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Text Books:

- 1. Advanced Data Structures, Peter Brass, Cambridge University Press, 2008.
- 2. Kenneth A. Berman. Algorithms. Cengage Learning. 2002.
- 3. T. H Cormen, C E Leiserson, R L Rivest and C Stein. Introduction to Algorithms. PHI, 3rd Edition, 2010

Text Books:

- 1. Data Structures and Algorithm Analysis in C++, Mark Allen Weiss, 4 th Edition, 2014, Pearson.
- 2. Data structures with Java, Ford and Topp, Pearson Education.
- 3. Ellis Horowitz, SartajSahni, S.Rajasekharan. Fundamentals of Computer Algorithms. Universities press. 2nd Edition, 2007
- 4. Data structures and Algorithms in Java, M.T.Goodrich, R.Tomassia, 3rd edition, Wiley India Edition.

Web links and Video Lectures (e-Resources):

https://www.coursera.org/learn/advanced-data-structures

https://nptel.ac.in/courses/106106133

https://pages.cs.wisc.edu/~shuchi/courses/787-F07/about.html

https://www.youtube.com/watch?v=0JUN9aDxVmI&list=PL2SOU6wwxB0uP4rJgf5ayhHWgw7a

kUWSf

Skill Development Activities Suggested

• The students with the help of the course teacher can take up relevant technical activities which will enhance their skills. The prepared report shall be evaluated for CIE marks.

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

Sl. No.	Description	Blooms Level
CO1	Analyze and apply fundamental data structures and algorithms to solve complex computational problems effectively	L4
CO2	Evaluate and implement various searching, sorting to optimize algorithm performance.	L5

CO3	Design and analyze advanced tree and graph algorithms, including balanced search trees	L5
	and graph traversal methods, to address real-world applications	

SI. No.	Description	POs
1	Demonstrate the ability to independently conduct research and development work to address practical engineering problems.	PO1
2	Develop and deliver comprehensive technical presentations that effectively convey complex information to diverse audiences.	PO2
3	Exhibit mastery in the specialized study area, surpassing therequirements of a relevant bachelor's program.	PO3
4	Analyze engineering problems critically and apply appropriatetechniques, skills, and modern tools to develop innovative solutions.	PO4
5	Collaborate effectively in teams while also functioningindependently, recognizing opportunities for career advancement and research.	PO5
6	Cultivate a proactive approach to continuous learning andprofessional development in response to evolving technologicallandscapes.	PO6

Program Outcome of this course

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Х			Х		
CO2			Х		X	
CO3		Х				
CO4					х	

		Internet of Things	5				
Course Code		MCS104F	CIE Marks	50			
Teaching Hours/	Week (L:P:SDA)	3	SEE Marks	50			
Total Hours of F	edagogy	40	Total Marks	100			
Credits		03	Exam Hours	03			
 Course Learnin Explore Explain Discuss 	ag objectives: the knowledge on comb the definition and signif the architecture, operation	ination of functionalities an icance of the Internet of Th on and business benefits of	nd services of networking ings. an IoT solution.				
		Module-1					
What is The IPV6 Role, A Internet of T Nodal Capa Metering/Ad Automation, OverThe-Air Other Applic	Internet of Things? Areas of Developmen Things Definitions an abilities. Internet vanced Metering Automotive Appli Passive Surveillance ations	P Overview and Motiv at and Standardization, and frameworks-IoT D of Things Applica Infrastructure-Health acations, Home Auto e/Ring of Steel, Contro	vations, Examples of A Scope of the Present In refinitions, IoT Framew tion Examples-Overvi n/Body Area Netwo omation, Smart Cards of Application Examples	pplications, vestigation. vorks, Basic ew, Smart orks, City , Tracking, , Myriad			
	Chalk and talk						
Learning Process	PPT						
		Module-2					
Fundamental Services, Str Overview an Application Partnership F IETF IPv6 O	IoT Mechanism as uctural Aspects of the nd Approaches, IET Protocol, Represent Project Service Requiver Low power WPA	nd Key Technologies he IoT, Key IoT Tech F IPV6 Routing Pro- ational State Transfe rements for Machine- AN, Zigbee IP(ZIP), IPS	-Identification of IoT mologies. Evolving IoT ptocol for RPL Roll, r, ETSI M2M, Third Fype Communications, 0	Object and Standards- Constrained Generation CENELEC,			
Teaching- Learning Process	Chalk and talk PPT						
		Module-3					
Layer ½ Connectivity: Wireless Technologies for the IoT-WPAN Technologies for IoT/M2M, Cellular and Mobile Network Technologies for IoT/M2M, Layer 3 Connectivity :IPv6 Technologies for the IoT: Overview and Motivations. Address Capabilities, IPv6 Protocol Overview, IPv6 Tunneling, IPsec in IPv6,Header Compression Schemes, Quality of Service in IPv6, Migration Strategies to IPv6							
Teaching- Learning Process	Chalk and talk PPT						
<u> </u>	Module-4						
Case Studies Agriculture, F	illustrating IoT Desig Productivity Applicat	gn-Introduction, Home ions.	Automation, Cities, En	Case Studies illustrating IoT Design-Introduction, Home Automation, Cities, Environment, Agriculture, Productivity Applications.			

	Teaching-	Chalk and talk		
	PPT			
	Process			
		Module-5		
	Data Analytics for IoT – Introduction, Apache Hadoop, Using HadoopMapReduce for Batch			
	Data Analysis, Apache Oozie, Apache Spark, Apache Storm, Using Apache Storm for Real-			
	time Data Analysis, Structural Health Monitoring Case Study.			
	Teaching-	Chalk and talk		
	Learning PPT			
	Process			

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of **20 Marks**
- 2. Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub- questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications Daniel Minoli Wiley 2013
- Internet of Things: A Hands-on Approach ArshdeepBahga, Vijay Madisetti Universities Press 2015
- 11. The Internet of Things Michael Miller Pearson 2015 First Edition
- 12. Designing Connected Products Claire Rowland, Elizabeth Goodman et.al O'Reilly First Edition, 2015

Web links and Video Lectures (e-Resources):

٠	https://www.tutorialspoint.com/internet_of_things/index.htm#:~:text=IoT%20(Internet%20of%20Things
)%20is,to%20any%20industry%20or%20system.

- .
- https://www.javatpoint.com/iot-internet-of-things https://www.digimat.in/nptel/courses/video/106105166/L01.html(Video Lectures) .

Skill Development Activities Suggested

The students with the help of the course teacher can take up relevant technical activities which will enhance their skill

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Descriptio	Blooms Le
	n	
CO1	Choose appropriate schemes for the applications of IOT in real time	L2
	scenarios	
CO2	Manage the Internet resources through different protocols used in each	L1
	layer	
CO3	Compare various protocols and algorithms in different layers that facilitate	L3
	effective communication mechanisms	
CO4	Identify how IoT differs from traditional data collection systems	L2

Advances in Operating Systems						
Course Code	MCS105G	CIE Marks	50			
Teaching	3	SEE Marks	50			
Hours/Week						
(L:P:SDA)						
Total Hours of	40	Total Marks	100			
Pedagogy						
Credits	03	Exam Hours	03			

- To understand the objectives and functions of operating systems, including their evolution and security issues related to processes.
- To analyze processes and threads, including symmetric multiprocessing (SMP) and memory management in Windows Vista and UNIX systems.
- To evaluate multiprocessor scheduling and real-time scheduling techniques, including process migration and distributed systems concepts.
- To explore the characteristics of embedded operating systems and understand computer security concepts, including threats and malicious software.

Module-1

Operating System Overview, Process description & Control: Operating System Objectives and Functions, The Evolution of Operating Systems, Major Achievements, Developments Leading to Modern Operating Systems, Microsoft Windows Overview, Traditional UNIX Systems, Modern UNIX Systems, What is a Process?, Process States, Process Description, Process Control, Execution of the Operating System, Security Issues.

Module-2

Threads, SMP, and Microkernel, Virtual Memory: Processes and Threads, Symmetric Multiprocessing (SMP), Micro Kernels, Windows Vista Thread and SMP Hours Management, Linux Process and Thread Management. Hardware and Control Structures, Operating System Software, UNIX Memory Management, Windows Vista Memory Management, Summary

Module-3

Multiprocessor and Real-Time Scheduling: Multiprocessor Scheduling, Real-Time Scheduling, Linux Scheduling, UNIX PreclsSl) Scheduling, Windows Vista Hours Scheduling, Process Migration, Distributed Global States, Distributed Mutual Exclusion, Distributed Deadlock

Module-4

Embedded Operating Systems: Embedded Systems, Characteristics of Embedded Operating Systems, eCOS, TinyOS, Computer Security Concepts, Threats, Attacks, and Assets, Intruders, Malicious Software Overview, Viruses, Worms, and Bots, Rootkits.

Module-5

Kernel Organization: Using Kernel Services, Daemons, Starting the Kernel, Control in the Machine , Modules and Device Management, MODULE Organization, MODULE Installation and Removal, Process and Resource Management, Running Process Manager, Creating a new Task , IPC and Synchronization, The Scheduler , Memory Manager , The Virtual Address Space, The Page Fault Handler , File Management. The windows NT/2000/XP kernel: Introduction, The NT kernel, Objects , Threads, Multiplication Synchronization, Traps, Interrupts and Exceptions, The NT executive , Object Manager, Process and Thread Manager , Virtual Memory Manager, I/o Manager, The cache Manager Kernel local procedure calls and IPC, The native API, subsystems.

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 3. Three Unit Tests each of **20 Marks**
- 4. Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 6. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 7. The question paper will have ten full questions carrying equal marks.
- 8. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 9. Each full question will have a sub-question covering all the topics under a module.
 - The students will have to answer five full questions, selecting one full question from each module

Course outcome (Course Skill Set)							
At the er	At the end of the course the student will be able to :						
Sl. No.	Sl. No. Description						
CO1	To understand the objectives and functions of operating systems,	L2					
	including their evolution and security issues related to processes.						
CO2	To analyze processes and threads, including symmetric multiprocessing	L1					
	(SMP) and memory management in Windows Vista and UNIX						
	systems.						
CO3	To evaluate multiprocessor scheduling and real-time scheduling	L3					
	techniques, including						
	process migration and distributed systems concepts.						
CO4	To explore the characteristics of embedded operating systems and	L2					
	understand computer security concepts, including threats and malicious						
	software						

Textbook/Reference Books						
Title of the book	Author Name	Publisher's	Publication			
		Name	year			
xt Book(s):						
Operating Systems: Internals and Design Principles	William Stallings	Prentice Hall, 6th Edition	2013			
Operating Systems	Gary Nutt,	Pearson, 3rd	2014			
	Pearson	Edition				
ference Book(s):		·				
Operating System Concepts	Silberschatz, Galvin, Gagne	Wiley, 8th Edition	2008			
Operating Systems, Design and Implementation	Andrew S. Tanenbaum, Albert S. Woodhull,	Prentice Hall, 3rd Edition	2006			
Distribute Operating Systems, Concept and Design	Pradeep K Sinha	PHI	2007			
	xtbook/Reference BooksTitle of the bookxt Book(s):Operating Systems: Internals and Design PrinciplesOperating Systemsference Book(s):Operating System ConceptsOperating Systems, Design and ImplementationDistribute Operating Systems, Concept and Design	xtbook/Reference BooksTitle of the bookAuthor Namext Book(s):Author NameOperating Systems: Internals and Design PrinciplesWilliam StallingsOperating SystemsGary Nutt, Pearsonference Book(s):Operating System ConceptsOperating Systems, Design and ImplementationSilberschatz, Galvin, GagneOperating Systems, Design and ImplementationAndrew S. Tanenbaum, Albert S. Woodhull,Distribute Operating Systems, Concept and DesignPradeep K Sinha	xtbook/Reference BooksTitle of the bookAuthor NamePublisher's Namext Book(s):Operating Systems: Internals and Design PrinciplesWilliam Stallings Gary Nutt, PearsonPrentice Hall, 6th EditionOperating SystemsGary Nutt, PearsonPearson, 3rd Editionference Book(s):Operating System ConceptsSilberschatz, Galvin, GagneWiley, 8th EditionOperating Systems, Design and ImplementationAndrew S. Tanenbaum, Albert S. Woodhull,Prentice Hall, 3rd EditionDistribute Operating Systems, Concept and DesignPradeep K SinhaPHI			

Program	Program Outcome of this course					
Sl. No.	Description		POs			
1	Demonstrate the ability to independently conduct research and development work to address practical engineering problems.	Po1				
2	Develop and deliver comprehensive technical presentations that effectively convey complex information to diverse audiences.	PO2				
3	Exhibit mastery in the specialized study area, surpassing therequirements of a relevant bachelor's program.	PO3				
4	Analyze engineering problems critically and apply appropriatetechniques, skills, and modern tools to develop innovative solutions.	PO4				
5	Collaborate effectively in teams while also functioningindependently, recognizing opportunities for career advancement andresearch.	PO5				
6	Cultivate a proactive approach to continuous learning andprofessional development in response to evolving technologicallandscapes.	PO6				

	PO1	PO2	PO3	PO4	PO5	PO6
C01			X	X		
CO2						
CO3			X			
CO4	x					

ALGORITHMS & AI LABORATORY Course Code 40 MCSL106 **CIE Marks** 60 Number of Contact Hours/Week 0:0:2 SEE Marks **Total Number of Lab Contact Hours** 36 **Exam Hours** 03 Credits – 2 Course Learning Objectives: This course MCSL106 will enable students to: Implement and evaluate Algorithm and AI in Python programming language. • **Descriptions (if any):** Installation procedure of the required software must be demonstrated, carried out in groups. and documented in the journal. **Programs List:** Implement a simple linear regression algorithm to predict a continuous target variable based on a 1. given dataset. Develop a program to implement a Support Vector Machine for binary classification. Use a sample 2. dataset and visualize the decision boundary. Develop a simple case-based reasoning system that stores instances of past cases. Implement a 3. retrieval method to find the most similar cases and make predictions based on them. Write a program to demonstrate the ID3 decision tree algorithm using an appropriate 4. dataset for classification. 5. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test it with suitable datasets. Implement a KNN algorithm for regression tasks instead of classification. Use a small dataset, and 6. predict continuous values based on the average of the nearest neighbors. 7. Create a program that calculates different distance metrics (Euclidean and Manhattan) between two points in a dataset. Allow the user to input two points and display the calculated distances. 8. Implement the k-Nearest Neighbor algorithm to classify the Iris dataset, printing both correct and incorrect predictions. Develop a program to implement the non-parametric Locally Weighted Regression algorithm, fitting 9. data points and visualizing results. 10 Implement a Q-learning algorithm to navigate a simple grid environment, defining the reward structure and analyzing agent performance. Laboratory Outcomes: The student should be able to: Implement and demonstrate AI algorithms. Evaluate different algorithms. • **Conduct of Practical Examination:** Experiment distribution. For laboratories having only one part: Students are allowed to pick one experiment from 0 the lot with equal opportunity. For laboratories having PART A and PART B: Students are allowed to pick one \circ experiment from PART A and one experiment from PART B, with equal opportunity. Change of experiment is allowed only once and marks allotted for procedure to be made zero of the changed part only. Marks Distribution (*Courseed to change in accoradance with university regulations*) q) For laboratories having only one part – Procedure + Execution + Viva-Voce: 15+70+15 =100 Marks r) For laboratories having PART A and PART B i. Part A – Procedure + Execution + Viva = 6 + 28 + 6 = 40 Marks

ii. Part B – Procedure + Execution + Viva = 9 + 42 + 9 = 60 Marks

Research Methodology and IPR						
Course Code	MRMI107	CIE Marks	50			
TeachingHours/Week(L:P:SDA)	3:0:0	SEE Marks	50			
Total Hours of Pedagogy	40	Total Marks	100			
Credits	03	Exam Hours	03			

Course Learning Objectives:

- Introduce various technologies for conducting research.
- Choose an appropriate research design for the chosen problem.
- Explain the art of interpretation and the art of writing research reports.
- Explore the various forms of intellectual property, its relevance and business impact in the changing global business environment.
- Discuss leading International Instruments concerning Intellectual Property Rights.

Module-1

Research Methodology: Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Process, Criteria of Good Research, and Problems Encountered by Researchers in India. Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration

Teaching-Learning Process

Module-2

Chalk and talk/PPT/case study

Reviewing the literature: Place of the literature review in research, Bringing clarity and focus to your research problem, Improving research methodology, Broadening knowledge base in research area, Enabling contextual findings, How to review the literature, searching the existing literature, reviewing the selected literature, Developing a theoretical framework, Developing a conceptual framework, Writing about the literature reviewed. Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs.

Teaching-	Chalk and talk/PPT/case study/web content
Learning	
Process	

Module-3

Design of Sampling: Introduction, Sample Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. Measurement and Scaling: Qualitative and Quantitative Data, Classifications of Measurement Scales, Goodness of Measurement Scales, Sources of Error in Measurement Tools, Scaling, Scale Classification Bases, Scaling Technics, Multidimensional Scaling, Deciding the Scale. Data Collection: Experimental and Surveys, Collection of Primary Data, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method.

Teaching-Learning Process	Chalk and talk/PPT/case study/web content
	Module-4
Testing of Hypotheses: Hypothesis,	Basic Concepts Concerning Testing of Hypotheses, Testing of Hypothesis, Test
Statistics and Critical Region, Criti	cal Value and Decision Rule, Procedure for Hypothesis Testing, Hypothesis
Testing for Mean, Proportion, Varia	ance, for Difference of Two Mean, for Difference of Two Proportions, for
Difference of Two Variances, P-Valu	ue approach, Power of Test, Limitations of the Tests of Hypothesis. Chi-square
Test: Test of Difference of more than	n Two Proportions, Test of Independence of Attributes, Test of Goodness of Fit,

Cautions in Using Chi Square Tests

Teaching-Learning Process

Chalk and talk/PPT/case study/web content

Module-5

Interpretation and Report Writing: Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports. Intellectual Property: The Concept, Intellectual Property System in India, Development of TRIPS Complied Regime in India, Patents Act, 1970, Trade Mark Act, 1999,The Designs Act, 2000, The Geographical Indications of Goods (Registration and Protection) Act1999, Copyright Act,1957,The Protection of Plant Varieties and Farmers' Rights Act, 2001,The Semi-Conductor Integrated Circuits Layout Design Act, 2000, Trade Secrets, Utility Models, IPR and Biodiversity, The Convention on Biological Diversity (CBD) 1992, Competing Rationales for Protection of IPRs, Leading International Instruments Concerning IPR, World Intellectual Property Organisation (WIPO),WIPO and WTO, Paris Convention for the Protection of Industrial Property, National Treatment, Right of Priority, Common Rules, Patents, Marks, Industrial Designs, Trade Names, Indications of Source, Unfair Competition, Patent Cooperation Treaty (PCT), Advantages of PCT Filing,

-	-	-	-	
Teaching-	Chalk and talk/PPT			
Learning				
Process				

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of **20 Marks**
- 2. Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Text Books:

- *Research Methodology: Methods and Techniques*, C.R. Kothari, Gaurav Garg, New Age International, 4th Edition, 2018.. Douglas E Comer, "Internetworking with TCP/IP, Principles, Protocols and Architecture," PHI, 6th Edition
- Research Methodology a step-by-step guide for beginners. RanjitKumar, SAGE Publications, 3rd Edition, 2011.

Reference Books:

- *Research Methods: the concise knowledge base*, Trochim, Atomic Dog Publishing, 2005.
- Conducting Research Literature Reviews: From the Internet to Paper, Fink A, Sage Publications, 2009.

Web links and Video Lectures (e-Resources):

• https://www.youtube.com/watch?v=A7oioOJ4g0Y&list=PLVf5enqoJ-yVQ2RXUl6mCfLPf3J_JUfoc

Course outcome (Course Skill Set)

At the end of the course, the student will be able to :

Sl. No.	Description
CO1	Identify and Conduct research independently in suitable research field.
CO2	Choose research designs, sampling designs, measurement and scaling techniques and also different method data collection.
CO3	Explore the Precautions in interpreting the data and drawing inferences.

Mapping of COS and POs								
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1		X		x				
CO2		X	X					
CO3					x			

Research Methodology and IPR						
Course Code	MRMI107	CIE Marks	50			
Teaching Hours/Week (L:P:SDA)	3:0:0	SEE Marks	50			
Total Hours of Pedagogy	40	Total Marks	100			
Credits	03	Exam Hours	03			

Course Learning Objectives:

- Introduce various technologies for conducting research.
- Choose an appropriate research design for the chosen problem.
- Explain the art of interpretation and the art of writing research reports.
- Explore the various forms of intellectual property, its relevance and business impact in the changing global business environment.
- Discuss leading International Instruments concerning Intellectual Property Rights.

Module-1

Research Methodology: Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Process, Criteria of Good Research, and Problems Encountered by Researchers in India. Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration

Teaching-Learning Process	Chalk and talk/PPT/case study	
	Module-2	
Reviewing the literature. Place of t	he literature review in research	Bringing clarity and focus to your research

Reviewing the literature: Place of the literature review in research, Bringing clarity and focus to your research problem, Improving research methodology, Broadening knowledge base in research area, Enabling contextual findings, How to review the literature, searching the existing literature, reviewing the selected literature, Developing a theoretical framework, Developing a conceptual framework, Writing about the literature reviewed. Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs.

Teaching-	Chalk and talk/PPT/case study/web content
Learning	
Process	
	Module-3

Design of Sampling: Introduction, Sample Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. Measurement and Scaling: Qualitative and Quantitative Data, Classifications of Measurement Scales, Goodness of Measurement Scales, Sources of Error in Measurement Tools, Scaling, Scale Classification Bases, Scaling Technics, Multidimensional Scaling, Deciding the Scale. Data Collection: Experimental and Surveys, Collection of Primary Data, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method.

Teaching-Learning Process	Chalk and talk/PPT/case study/web content			
	Module-4			
Testing of Hypotheses: Hypothesis, Basic Concepts Concerning Testing of Hypotheses, Testing of Hypothesis, Test				
Statistics and Critical Region, Critic	cal Value and Decision Rule, Procedure for Hypothesis Testing, Hypothesis			
Testing for Mean, Proportion, Varia	ance, for Difference of Two Mean, for Difference of Two Proportions, for			

Difference of Two Variances, P-Value approach, Power of Test, Limitations of the Tests of Hypothesis. Chi-square Test: Test of Difference of more than Two Proportions, Test of Independence of Attributes, Test of Goodness of Fit, Cautions in Using Chi Square Tests

Teaching-Learning Process	Chalk and talk/PPT/case study/web content				

Module-5

Interpretation and Report Writing: Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports. Intellectual Property: The Concept, Intellectual Property System in India, Development of TRIPS Complied Regime in India, Patents Act, 1970, Trade Mark Act, 1999,The Designs Act, 2000, The Geographical Indications of Goods (Registration and Protection) Act1999, Copyright Act,1957,The Protection of Plant Varieties and Farmers' Rights Act, 2001,The Semi-Conductor Integrated Circuits Layout Design Act, 2000, Trade Secrets, Utility Models, IPR and Biodiversity, The Convention on Biological Diversity (CBD) 1992, Competing Rationales for Protection of IPRs, Leading International Instruments Concerning IPR, World Intellectual Property Organisation (WIPO),WIPO and WTO, Paris Convention for the Protection of Industrial Property, National Treatment, Right of Priority, Common Rules, Patents, Marks, Industrial Designs, Trade Names, Indications of Source, Unfair Competition, Patent Cooperation Treaty (PCT), Advantages of PCT Filing,

Teaching-	Chalk and talk/PPT
Learning	
Process	

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 3. Three Unit Tests each of **20 Marks**
- 4. Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 6. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 7. The question paper will have ten full questions carrying equal marks.
- 8. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 9. Each full question will have a sub-question covering all the topics under a module.
- 10. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Text Books:

- *Research Methodology: Methods and Techniques*, C.R. Kothari, Gaurav Garg, New Age International, 4th Edition, 2018.. Douglas E Comer, "Internetworking with TCP/IP, Principles, Protocols and Architecture," PHI, 6th Edition
- Research Methodology a step-by-step guide for beginners. RanjitKumar, SAGE Publications, 3rd Edition, 2011.

Reference Books:

- *Research Methods: the concise knowledge base*, Trochim, Atomic Dog Publishing, 2005.
- Conducting Research Literature Reviews: From the Internet to Paper, Fink A, Sage Publications, 2009.

Web links and Video Lectures (e-Resources):

• https://www.youtube.com/watch?v=A7oioOJ4g0Y&list=PLVf5enqoJ-yVQ2RXUl6mCfLPf3J_JUfoc

Course outcome (Course Skill Set)

At the end of the course, the student will be able to :

Sl. No.	Description
CO1	Identify and Conduct research independently in suitable research field.
CO2	Choose research designs, sampling designs, measurement and scaling techniques and also different method
	data collection.
CO3	Explore the Precautions in interpreting the data and drawing inferences.

Mapping of COS and POs						
	PO1	PO2	PO3	PO4	PO5	PO6
CO1		X		Х		
CO2		Х	Х			
CO3					X	