Semester-II

Advanced Materials Characterisation Techniques							
Course Code	MMST201	CIE Marks	50				
Teaching Hours/Week (L:P:SDA)	3;0;0;0	SEE Marks	50				
Total Hours of Pedagogy	40	Total Marks	100				
Credits	04	Exam Hours	03				

Course Learning objectives:

Learner shall familiarize about the different methods available to characterize the materials using different application and in failure analysis.

Module-1

Importance and the need for materials characterization;

X- ray diffraction -- Bragg's condition -- Laue treatment -- reciprocal lattice—intensity of diffracted beam -crystal structure determination -- atomic scattering factor --geometrical structure factor for s.c, f.c.c and b.c.cc structures -- experimental methods - Laue, rotating crystal and powder photograph methods - estimation of stress, texture and other defects -- electron diffraction -- neutron diffraction.

8 Hrs

Teaching- Learning Process Chalk and Talk method/ Power point presentation

Module-2

Particle size analysis techniques based on light scattering, Powder characterisation by microscopy techniques (light, electron), light scattering, gas adsorption (BET), Gas pycnometer for density measurement, and compositional analysis of powders by XRF and ICP techniques.

8 Hrs

Teaching-	.Chalk and Talk method/ Power point presentation
Learning	
Process	

Module-3

Metallography and microstructures, Principles of optical microscopy -resolution, magnification, depth of focus; electron diffraction, imaging (various contrasts), Cross-Sectional and fracture surface analysis of materials/coatings using FESEM, Crystal Identification through Selected area diffraction pattern (SADP) etc.

8 Hrs

Teaching-	Chalk and Talk method/ Power point presentation						
Learning							
Process							
Modula-4							

Electron microscopy: Scanning electron microscopy (SEM), Instrumentation, Electron beam-specimen interaction, Specimen preparation, Energy dispersive spectroscopy (EDS) in electron microscopes; Transmission electron microscopy (TEM) - Basics of TEM, Electron sources, Specimen preparation, Image modes, Image contrast.8 Hrs

Teaching- Chalk and Talk method/ Power point presentation							
Learning							
Process							
Module-5							

Tribology, Wear type and its Characterization, wear surface analysis, Tribometer, Friction, Low friction materials/coating etc. Instrumentation and principles of techniques used for thermal analysis, micro-thermal analysis, combined method of thermal analysis and their applications in materials characterization.

8 Hrs

Teaching-	Chalk and Talk method/ Power point presentation
Learning	
Process	
	•

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 20 Marks
- 2. Two assignments each of **20 Marks**or**one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. An Introduction to Materials Characterization, P. R. Khangaonkar; Penram Publishers, 2010.
- 2. Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, Yang Leng; 2nd ed., Wiley, 2013.
- 3. Scanning Electron Microscopy and X-Ray Microanalysis, Joseph Goldstein, Eric Lifshin, Charles E. Lyman, David C. Joy and Patrick Echlin; 3rd ed., Springer, 2003.
- 4. Physical Methods for Materials Characterisation, P.E.J.Flewitt, R.K.Wild; Institute of Physics Publishing Ltd., 1994.
- 5. Thermal characterization of polymeric materials, Edith A. Turi (ed.), Academic Press, 1996.
- 6. Introduction to Polymer Rheology, Montgomery T. Shaw; Wiley, 2011.
- 7. Polymer Rheology and Processing, A.A. Collyer, Leszek A. Utracki; Springer, 1990.
- 8. Reference Books:
- 9. Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry, Marc De Graef, Michael E. McHenry; 2nd (ed.), Cambridge University Press, 2012.
- 10. Crystal Structure Determination, Werner Massa; 2nd (ed.), Springer, 2010.
- 11. Crystal Structure Analysis: Principles and Practice, Peter Main, William Clegg (ed.), Alexander J. Blake, Robert O. Gould, Vol 6, Oxford Science Publication, 2001.

•

Skill Development Activities Suggested

Faculty can assign and supervise Project based assignment individually on any one/two of the topics given in the syllabus. Make sure that the students should acquire the fullest knowledge in the subject

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

Sl. No.	Description	Blooms Level
CO1	To familiarize X-ray diffraction and neutron diffraction.	
CO2	To familiarize the analysis of particles by using different techniques	
CO3	To familiarize optical microscopy, diffraction pattern, FESEM.	
CO4	Analysis of surface deformities using different techniques	
CO5	To familiarize rheological and visco elastic properties measurement and analysis	

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	3	3	2	2	1	0	1	1	2	1	2
CO2	3	3	3	2	2	1	0	1	1	2	0	2
CO3	3	3	3	2	2	1	0	1	1	2	0	2
CO4	3	3	3	2	2	1	1	1	1	2	0	2
CO5	3	3	32	2	2	1	1	1	1	2	0	2

Course Code	MMST202	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	3;0;0;0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03

Course Learning objectives:

- Explain the behavior of constituents in the composite materials
- Enlighten the students in different types of reinforcement
- Develop the student's skills in understanding the different manufacturing methods available for compositematerial.
- Illuminate the knowledge and analysis skills in applying basic laws in mechanics to the

comp	osite materials.						
	Module-1						
INTRODUCTION: Definition - Classification and characteristics of Composite materials. Advantages and							
application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size,							
shape, distribution, volume fraction) on overall composite performance.							
Teaching-							
Learning							
Process							
	Module-2						
	IENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers,						
Kevlar fiber	s and Boron fibers. Properties and applications of whiskers, particle reinforcements.						
Mechanical E	Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress						
conditions.							
Teaching-							
Learning							
Process	75.1.1.0						
3.6 C	Module-3						
	ng of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot						
	ssing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid						
Metal Infiltr	ation – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting,						
Braiding, We	eaving. Properties and applications.						
Teaching-							
Learning							
Process							
	Module-4						
Manufacturin	g of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs - hand						
layup method	d - Autoclave method - Filament winding method - Compression moulding - Reaction						
	lding. Properties and applications.						
	• • • • • • • • • • • • • • • • • • • •						
Teaching-							
Learning Process							
110003	Module-5						
Strength: Lam	inar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting						
	hygrothermal failure. Laminate first play failure-insight strength: Laminate strength-ply discount						

truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

	,	U	U	U	1	,
Teaching-						
Learning						
Process						

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 3. Three Unit Tests each of 20 Marks
- Two assignments each of 20 Marksorone Skill Development Activity of 40 marks to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 6. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 7. The question paper will have ten full questions carrying equal marks.
- 8. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 9. Each full question will have a sub-question covering all the topics under a module.
- 10. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.
- 5. Mechanics of composite materials -Robert M Jones 1998
- 6. Mechanics of composite materials Autar K Kaw 1997

Web links and Video Lectures (e-Resources):

- 1. https://youtu.be/AKhN-dBoBjM?list=PLHGmNPVOI3GElgoeCoescO3LRfErfmW0i
- 2. https://youtu.be/zmbS TmNDP4?list=PLSGws 74K01-4rcWuB5BEATHSsOrBd1ye

Skill Development Activities Suggested

1.Individual projects on topics covered in class. Students will choose a real life problems related to the discussed topics and implement the solution by using techniques and strategies discussed in the class. For each project, students have to submit a report and present a seminar.

2. Assignments, Quiz and Industrial Visit on relevant topic of the course.

Course outcome (Course Skill Set

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
CO1	Apply the various processing and manufacturing techniques	
CO2	Apply the techniques and their characteristics/limitations of synthesis ofpolymers	
CO3	Evaluate the structure-processing-property relationship of metals and polymers.	
CO4	Analyze the basic issues involved in polymer blends, metal matrix composites and	
	ceramic matrix composites	
CO5	Analyze the stress strain behaviour of the composites	

Program Outcome of this course

Sl. No.	Description	POs

- F F												
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	3	3	3	1	2	2	2	2	2	1	2
CO2	3	3	3	3	1	2	2	2	2	2	1	2
CO3	3	3	3	3	1	2	2	2	1	2	1	2
CO4	3	3	3	3	1	2	2	2	1	2	1	2
CO5	3	3	3	2	1	2	0	2	2	2	1	2

Course Code		Mechanical Behaviour of	CIE Marks	50
Tooching Ha	es /Mools (L.D.CDA)	Metals MMST203	SEE Marks	50
Total Hours of	rs/Week (L:P:SDA)	3;0;0;0	Total Marks	100
Credits	1 cuagogy	3	Exam Hours	3
Course Learni	ing objectives:			
		Module-1		
behaviour, e plasticity: El dislocations, a	elements of plastic deform ements of theory of plas pplication of dislocation	ions, elastic and plastic behaviour, mation of metallic materials Mohr ticity, dislocation theory propertie theory to work hardening, solid so rengthening, dispersion hardening	's circle, yielding theo: s of dislocation, stres: olution strengthening,	ries. Theory of s fields around
Learning Process				
110003		Module-2		
Ductile and B	rittle Fracture: Ductile a	nd brittle fracture, Charpy and Izo	od testing, significance	e of DBTT, ECT.
	gue strength and metho fatigue crack propagatio	ds of improving fatigue behavioun, corrosion fatigue.	ır – testing analysis	or ratigue data
Process		Module-3		
		echanisms, creep curve, varia eep resistant alloys, Larsen Mi		
Process				
		Module-4		
mechanics, cha microscopy, fa	aracteristics of ductile ar actors affecting fatigue	on and identification of various ty nd brittle fracture. General concept life Creep, stress rupture, elevate ilure. Some case studies failures.	ts, fracture characteri	stics revealed by
Teaching- Learning Process				
	1	Module-5		
various types Procedure for in forging; fai	of corrosion stress cor analyzing stress corrosion lure of iron and steel	Corrosion failures- factors influe rosion cracking, sources, charact on cracking, various types of hydro castings, improper heat treatme ons for failure procedure for weld	eristics of stress cor ogen damage failures. nt, stress concentrat	rosion cracking. Causes of failure
Teaching-				

Process

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 5. Three Unit Tests each of 20 Marks
- 6. Two assignments each of **20 Marks**or**one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 11. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 12. The question paper will have ten full questions carrying equal marks.
- 13. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 14. Each full question will have a sub-question covering all the topics under a module.

Suggested Learning Resources:

Books

- 1. Mechanical Behaviour of Materials (MCGRAW HILL SERIES IN MATERIALS SCIENCE AND ENGINEERING) Hardcover Import, 1 Mar 1990 Thomas Courtney.
- 2. Mechanical Behavior of Materials: Second Edition Front Cover Thomas H. Courtney Waveland Press, 16-Dec-2005 Technology & Engineering.
- 3. Mechanical Metallurgy", Dieter G. E 3rd Edition, McGraw Hill, 1988.
- 4. Testing of Metallic Materials", Suryanarayana Prentice Hall India, 1979.
- 5. Structure and Properties of Materials", Rose R. M., Shepard L. A., Wulff J., Volume III, 4th Edition, John Wiley, 1984

Wiley, 1984
Web links and Video Lectures (e-Resources):
• .
Skill Development Activities Suggested
•

At the end	l of the co	ourse the	e <u>studen</u>	t <u>will be</u>								
Sl. No.						cription					Blooi	ns Leve
CO1	Unders	stand th	e conce	pt of m	echanic	cal beha	viour o	f mater	ials			
CO2	•	se its ch of failu		stics fa	ilure an	d analy	se the n	nodes a	ınd stag	ges of		
CO3	Unders	stand ar	nd analy	se the f	ailure a	nalysis	of cree	р				
CO4		se the b				nd its ch			various	S		
C05	Unders	stand th	ne proce	ess and	failure	mechan	ism of 1	the wea	ar			
Program											<u> </u>	
Sl. No.					Desci	ription					P	0s
Mapping	of COS a	nd POs										
Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	3	3	2	1	1	1	2	1	2	1	2
CO2	3	3	3	3	2	2	1	2	1	2	0	2
CO3	3	3	3	3	2	2	1	2	1	2	0	2
CO4	3	3	3	3	2	1	1	2	1	2	0	2
CO5	3 3 3 2 1 1 1 2 1 2									1	2	

Professional Elective 3

Process

	The	rmodynamics and Phase dia		
Course Code		MMST214A	CIE Marks	50
Teaching Hou	rs/Week (L:P:SDA)	3:0:0	SEE Marks	50
Total Hours o	f Pedagogy	40H	Total Marks	100
Credits		3	Exam Hours	3
• •	ning objectives:			
		Module-1		
		Esingle crystals, metallic solid merical problems on above.	solutions, crystalline imp	perfections, rate
Teaching- Learning Process				
		Module-2		
Maxwell's rel				
Process		Module-3		
Thermodyna	mic application to mat	ential, driving force, the thi erials: Ellingham diagrams; on and interpretation of 2 com	Electrochemistry: Porl	-
Teaching- Learning Process				
		Module-4		
Binary Iso-m		terpretation of mass fractions utectic alloy system (Lead-Tir	-	-
Teaching- Learning Process				
	•	Module-5		
	-	v cooling of Hypo and hypeoling Transformation (CCT) Di		-
Teaching- Learning				

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 7. Three Unit Tests each of 20 Marks
- 8. Two assignments each of **20 Marks**or**one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 16. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 17. The question paper will have ten full questions carrying equal marks.
- 18. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 19. Each full question will have a sub-question covering all the topics under a module.
- 20. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

Introduction to the Thermodynamics of Materials, David R. Gaskell, 5th ed., CRC Press, 2008.
2. Phase Transformations in Metals and Alloys, Porter, Easterling; 3ed ed, CRC Press, 1991.
3. Thermodynamics in Materials Science, Robert DeHoff; 2nd ed, 2006.
4. Ceramic Materials: Science and Engineering, C. Barry Carter, M. Grant Norton; Springer, 2007
5. Fundamentals of Materials Science and Engineering, Willian F smith 5 TH Edn
Web links and Video Lectures (e-Resources):
• .
Skill Development Activities Suggested
•

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

Sl. No.	Description	Blooms Level
CO1		
CO2		
CO3		
CO4		
CO5		

Program Outcome of this course

Sl. No.	Description	POs

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	3	3	2	1	1	1	2	1	2	1	2
CO2	3	3	3	3	2	2	1	2	1	2	0	2
CO3	3	3	3	3	2	2	1	2	1	2	0	2
CO4	3	3	3	3	2	1	1	2	1	2	0	2
CO5	3	3	3	2	1	1	1	2	1	2	1	2

	Sm	art Materials and Structu	ires	
Course Code		MMST214B	CIE Marks	50
Teaching Hou	rs/Week (L:P:SDA)	3:0:0	SEE Marks	50
Total Hours of	Pedagogy	40H	Total Marks	100
Credits		3	Exam Hours	3
Course Learn	ing objectives:			
0 . 0		Module-1	2	. 06.0
		ires, Potential Feasibility of S	-	
		tures. Piezoelectric materia		
		eld strain relation. Hysteresis	-	
	_	delling with induced strain R		
		on-single Actuators, dual Ac		Pure Bendin
harmonic exc	itation, Bernoulli-Euler bean	n Model, problems, Piezoelect	rical Applications.	
Teaching- Learning Process				
	<u> </u>	Module-2		
Shape memo	ry Alloy: Experimental Phe	nomenology, Shape Memory	Effect, Phase Transform	ation, Tanaka"
Constitutive I	Model, testing of SMA Wires,	Vibration Control through SM	/IA, Multiplexing. Applicati	ons Of SMA an
Problems. ER	and MR Fluids: Mechanisms	s and properties, Fluid Compo	osition and behavior, The	Bingham Plasti
and Related N	Models, Pre-Yield Response. F	Post-Yield flow applications in	Clatches, Dampers and Ot	thers.
Teaching-				
Learning				
Process				
		Module-3		
		Damped Vibrations (Over V		
-		tics, Sensors, Fiber Optics in		ions. Control o
Structures: M	lodelling, Control Strategies a	and Limitations, Active Struct	ures in Practice.	
Teaching-	1			
Learning				
Process				
LIUCESS		Module-4		

Teaching-	
Learning	
Process	
	Module-5
Devices: Senso	ors and Actuators, Conductivity of Semiconductors, Crystal Planes and Orientation, (Stress and Strain
Relations, Flex	xural Beam Bending Analysis Under Simple Loading Conditions), Polymers in MEMS, Optical MEMS
Applications.	
Teaching-	
Learning	
Process	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 9. Three Unit Tests each of 20 Marks
- 10. Two assignments each of 20 Marksorone Skill Development Activity of 40 marks to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 21. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 22. The question paper will have ten full questions carrying equal marks.
- 23. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 24. Each full question will have a sub-question covering all the topics under a module.
- 25. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 12. An Introduction to Materials Characterization, P. R. Khangaonkar; Penram Publishers, 2010.
- 13. Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, Yang Leng; 2nd ed., Wiley, 2013.
- 14. Scanning Electron Microscopy and X-Ray Microanalysis, Joseph Goldstein, Eric Lifshin, Charles E. Lyman, David C. Joy and Patrick Echlin; 3rd ed., Springer, 2003.
- 15. Physical Methods for Materials Characterisation, P.E.J.Flewitt, R.K.Wild; Institute of Physics Publishing Ltd., 1994.
- 16. Thermal characterization of polymeric materials, Edith A. Turi (ed.), Academic Press, 1996.
- 17. Introduction to Polymer Rheology, Montgomery T. Shaw; Wiley, 2011.
- 18. Polymer Rheology and Processing, A.A. Collyer, Leszek A. Utracki; Springer, 1990.
- 19. Reference Books:
- 20. Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry, Marc De Graef, Michael E. McHenry; 2nd (ed.), Cambridge University Press, 2012.
- 21. Crystal Structure Determination, Werner Massa; 2nd (ed.), Springer, 2010.
- 22. Crystal Structure Analysis: Principles and Practice, Peter Main, William Clegg (ed.), Alexander J. Blake, Robert O. Gould, Vol 6, Oxford Science Publication, 2001.

V

Veb links and Video Lectures (e-Resources):					
• .					

Skill Development Activities Suggested

•

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

Sl. No.	Description	Blooms Level
CO1	Understand the behaviour and applicability of various smart materials	
CO2	Design simple models for smart structures & materials	
CO3	Perform simulations of smart structures & materials application	
CO4	Conduct experiments to verify the predictions	
CO5	knowledge of sensors, actuators.	

Program Outcome of this course

Sl. No.	Description	POs

happing of doo and 1 os												
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	3	3	2	1	1	1	2	1	2	1	2
CO2	3	3	3	3	2	2	1	2	1	2	0	2
CO3	3	3	3	3	2	2	1	2	1	2	0	2
CO4	3	3	3	3	2	1	1	2	1	2	0	2
CO5	3	3	3	2	1	1	1	2	1	2	1	2

		Mechanical Behaviour of thin fil	lms	
Course Code		MMST214C	CIE Marks	50
Teaching Hours	/Week (L:P:SDA)	3:0:0	SEE Marks	50
Total Hours of P		40H	Total Marks	100
Credits		3	Exam Hours	3
Course Learnin	g objectives:			
		Module-1		
-	-	ed for vacuum, ways to achieve va t gauges, conductance and other sy		
Teaching- Learning Process				
1.00003		Module-2		
molecular be contamination Teaching-	am epitaxy, laser	Physical and chemical vapo ablation and hot wire and ition, conformal coverge and line	microwave CVD te	
Learning Process		Module-3		
CVD and PVD. Teaching-	•	amic and kinetic consideration ion of thin film deposition proce	•	n films by both
Learning				
Process		-		
		Module-4		
	n of thin films: Diffe property determinat	rent methods of thickness measion	surements, electrical,	optical, chemical
Teaching- Learning Process				
-		Module-5		
Some important films.	applications of thin f	ilms: Hard and decorative coating	s, semiconductor thin f	ilms, organic thin
Teaching- Learning Process				

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 11. Three Unit Tests each of 20 Marks
- 12. Two assignments each of 20 Marksorone Skill Development Activity of 40 marks to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

26. The superior paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
27. The question paper will have ten full questions carrying equal marks.28. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions)
from each module.
29. Each full question will have a sub-question covering all the topics under a module.
30. The students will have to answer five full questions, selecting one full question from each module
and the statement with the term questions, servering one tail question from out meaning
Suggested Learning Resources:
Books
Web links and Video Lectures (e-Resources):
• ,
Skill Development Activities Suggested
•

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

Sl. No.	Description	Blooms Level
CO1	Students will be in a position to understand the science of thin films.	
CO2	Understanding of vacuum technology	
CO3	Knowledge of deposition techniques.	
CO4	Understanding of characterization techniques of thin film deposition.	
CO5	Apply knowledge to practical applications.	
L		

Program Outcome of this course

Sl. No.	Description	POs

Mapping of Co	US and PUs
---------------	------------

- rapping or o												
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	3	3	2	1	1	1	2	1	2	1	2
CO2	3	3	3	3	2	2	1	2	1	2	0	2
CO3	3	3	3	3	2	2	1	2	1	2	0	2
CO4	3	3	3	3	2	1	1	2	1	2	0	2
CO5	3	3	3	2	1	1	1	2	1	2	1	2

Bio Materials & Technology								
Course Code	MMST214D	CIE Marks	50					
Teaching Hours/Week (L:P:SDA)	3:0:0	SEE Marks	50					
Total Hours of Pedagogy	40H	Total Marks	100					
Credits	3	Exam Hours	3					

Course Learning objectives:

•

Module-1

Introduction: Definition of Bio material, Classification of Bio materials, Comparison of properties of some common bio materials, effects of physiological fluid on properties of biomaterials, surface properties, physical and Mechanical properties of Bio materials. Metallic Implants Materials: Stainless Steel, Co-based alloys, Ti and Ti based alloys, Important of stress corrosion cracking, Host tissue reaction with Bio metal, corrosion behaviour, hard tissue replacement implant, orthopaedic implant, dental implants, Percutaneous and skin implants, Vascular implants, Heart valve implant.

Teaching-Learning Process

Module-2

Polymeric Implant Materials: polyolefins, polyamides, acrylic polymers, fluorocarnon polymers, Silicon rubber acetals. Visco elastic behaviour, creep recovery, stress relaxation, strain rate sensitivity, importance of molecular structure, hydrophilic and hydrophobic surface properties, migration of additives, aging and environmental stress cracking, physiochemical characteristics of bio polymers, bio degradable polymers for medical purpose and their biological applications. Ceramic Implant Materials: Definitions of Bio ceramics, common type of Bio ceramics, Aluminium oxides, Glass ceramics, Carbons. Bioresorbable and Bioactive ceramics, Importance of wear resistance and low fracture toughness. Host Tissue reactions, Importance of Interfacial tissue reaction.

Teaching-Learning Process

Module-3

Composite Implant Materials: Mechanics of improvement of properties by incorporating different elements. Composite theory of fiber reinforcement, polymers filled with osteogenic fillers (e.g. hydrosyapatite). Host tissue reactions. Bio Compatibility And Toxicological Screening Of Bio Materials: Definition of bio compatibility, blood compatibility and tissue compatibility, toxicity tests, acute and chronic toxicity (in situ implantation, tissue culture, haemolysis, thrombogenic, potential test, systemic toxicity, intracutaneous irritation test), sensitization, carcinogenicity, mutagenicity and special tests.

Teaching-Learning Process

Module-4

Testing Of Bio Materials Implants: In vitro testing (Mechanical testing): tensile, compression, wears, fatigue, corrosion studies and fracture toughness. In vivo testing (animals): biological performance of implants. Exo- vivo testing, standards of implant materials.

Teaching- Learning	
Process	
	Module-5
Sterilisation T	echniques: ETO, gamma radiation, autoclaving, Effects of Sterilisation on material properties.
Teaching-	
Learning	
Process	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 13. Three Unit Tests each of 20 Marks
- 14. Two assignments each of **20 Marks**or**one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 31. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 32. The question paper will have ten full questions carrying equal marks.
- 33. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 34. Each full question will have a sub-question covering all the topics under a module.

Suggested Learning Resources:

Books

- 1. Biological performance of materials, Jonathan Black, MarceDecker, 1981.
- 2. Blood Compatible Materials and Devices, C.P. Sharma & M. Szyehen, Technonic Publishing Co Ltd.,1991.
- 3. Polymetric Biomaterials. Piskin and S.HofmannMantinusNijhoff publication bordrechnt 1986.
- 4. Biomaterials, Science and engineering, J.B. Park, Plenum Press 1984
- 5. Biomaterials, Sujata V. Bhat, Narosa Publishing House 2002

Web links and Video Lectures (e-Resources):		
• .		

Skill Development Activities Suggested Course outcome (Course Skill Set) At the end of the course the student will be able to: Description **Blooms Leve** Sl. No. Students will be able to know various biomaterials C01 CO2 Knowledge of its testing methods will be able to understand the significance of its use in various industrial CO3 applications. Apply sterilization techniques in industry. CO4 C05 Develop models to demonstrate his knowledge. Program Outcome of this course Sl. No. Description POs **Mapping of COS and POs** P01 **PO2** P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 CO1 3 3 2 1 1 2 1 2 2 CO2 3 3 3 3 2 2 1 2 1 2 0 2 CO3 2 2 3 3 3 3 2 2 2 0 1 1 **CO4** 3 3 3 3 2 1 1 2 1 2 0 2 CO5 3 3 3 2 1 1 1 2 1 2 1 2

Professional Elective 4

	Electronic, Op	tical and Magnetic Propert	ies of Materials	
Course Code		MMST215A	CIE Marks	50
Teaching Hours	/Week (L:P:SDA)	3:0:0	SEE Marks	50
Total Hours of P		40H	Total Marks	100
Credits		3	Exam Hours	3
Course Learnin •	g objectives:			
		Module-1		
Lattice Vibration	ons: Hamiltonian Mechani	cs, Vibrations in Crystals-P	honons, Elastic Bandgap.	Review of free
electron and l	band theories of solids,	Electrical conduction in r	netals and semiconduct	ors, Hall effect,
Temperature de	ependence of electrical cor	ductivity.		
Teaching- Learning Process				
		Module-2		
Quantum Mec	hanics: Schrodinger"s E	quation, 1-Dimensional Pr	rohlems Measurements	-The Ehrenfest
-	ee Dimensions-Hydrogen	_	oblems, Measurements	The Emerica
Teaching- Learning				
Process		Module-3		
	nd Structures: Periodicond	e Potential, Central Equa uctors.	tion, Understanding B	and Diagrams,
Process				
		Module-4		
Solid-State Dev Interfaces, Pho	-	r Cells, LEDs. Optical Pro	perties: Wave Equation	n, E/M Waves at
Teaching- Learning				
Process				
		Module-5	***	
		Para and Ferromagnetism,		
•	· ·	erromagnetic anisotropy an l Hard magnetic Materials.	d magnetostriction. Mag	netic energy and
Teaching- Learning Process	-,,,,,,,,,,	a		

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 15. Three Unit Tests each of 20 Marks
- 16. Two assignments each of **20 Marks**or**one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 36. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 37. The question paper will have ten full questions carrying equal marks.
- 38. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 39. Each full question will have a sub-question covering all the topics under a module.
- 40. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

buggested hearining resources.
Books
1. Electronic, Magnetic, and Optical Materials (Advanced Materials and Technologies)-Pradeep Fulay& Jung-Kun
Lee, CRC Press, Taylor & Francis Group.
2. Hyperlink: https://www.edx.org/course/electronic-optical-magnetic-properties-mitx-3-024x
3. Electronic properties of Materials, Hummel, R.E., Springer
4. Magnetic Materials, Azaroff, L.I, McGrawhill.
Web links and Video Lectures (e-Resources):
• .
Skill Development Activities Suggested
•

Course outcome (Course Skill Set) At the end of the course the student will be able to: Description Sl. No. **Blooms Level** Understand the various properties of materials C01 Knowledge of materials CO2 Ability to identify materials for practical purpose. CO3 Identify the potential of the materials. C04 C05 Real time application. **Program Outcome of this course** Sl. No. Description POs **Mapping of COS and POs** P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 CO1 **CO2** CO3 **CO4 CO5**

Advanced Foundry Technology				
Course Code	MMST215B	CIE Marks	50	
Teaching Hours/Week (L:P:SDA)	3:0:0	SEE Marks	50	
Total Hours of Pedagogy	40H	Total Marks	100	
Credits	3	Exam Hours	3	

Course	Learning	οh	iectives	
Course	LCai ming	υu	jetuves	٠.

job. Captive and mechanized foundries.

Teaching-Learning Process

•

Module-1

Solidification of Casting: Concept of solidification of metals. Homogenous and heterogeneous nucleation. Growth mechanism. Solidification of pure metals and alloys. Mechanism of columnar and dendritic growth. Coring or Segregation. Solidification time and Chvorinov's rule. Concept of progressive and directional solidifications. Principles of Gating and Risering: Purpose of the gating system. Components of the gating System and its functions. Design of the gating System. Different types of gates. Gating ratio and its functions. Definition and functions of the riser. Types of risers and their application. Design of the riser - its shape. Size and location. Use of insulating material and exothermic compounds in risers.

of insulating r	naterial and exothermic compounds in risers.
Teaching-	
Learning	
Process	
	Module-2
Design of Cas	sting and Quality Control: Factors to be considered in casting design. Design consideration in
pattern mak	ing, moulding techniques and core making and assembly. Cooling stresses and hot spots in
Teaching-	nodikiaakian in aaskina saamaksu ka amasama kkasu. Caskina dakaska and kaskassa mananaikla.
Learning	
Process	
	Module-3
Special cast	ing processes: Investment casting, Die casting, centrifugal casting, full mould casting,
vacuum shi	eld casting etc. Industrial melting practices: Aim of melting and melting practices as
adopted in c	ase of Cast Irons, Steel, Cu, Al and its alloys.
Teaching-	
Learning	
Process	
110000	Module-4
Aluminium F	oundry Practice:. Copper Alloy Foundry Practice: General characteristics of common cast
	. Melting and casting of copper alloys. Gating and risering of cu-alloy castings.
copper anoys	. Melting and casting of copper anoys, dating and risering of carantoy castings.
Teaching-	
Learning	
Process	
	Module-5
Foundry Mech	nanization and Modernization: Introduction to modernization. Mechanization of foundry and its
advantages. M	echanization of sand plant, moulding and core making mechanization in melting, pouring and

shakeout units. Material handling equipment's and conveyor systems. Brief sketches and description of layouts of

25

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 17. Three Unit Tests each of 20 Marks
- 18. Two assignments each of **20 Marks**or**one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 41. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 42. The question paper will have ten full questions carrying equal marks.
- 43. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 44. Each full question will have a sub-question covering all the topics under a module.
- 45. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

Principle of Metal Casting - Heine, et. al - Tata-McGraw-HiII Publication - 2003.

- 2. Foundry Technology Beelely, P.R. Butterworth & Co.
- 3. Fundamentals of Foundry Technology, Webster, P.D.,

4. Fundamentals of Metal casting Technology, Mukherjee, P.C
5.A Test Book of Foundry Technology - Lal, M. Khanna, P.O - Dhanpat Rai & Sons Publication. 2011
6. Advanced Foundry Technology – Pranav Pandey Pdf - 2017
Web links and Video Lectures (e-Resources):
• .
Skill Development Activities Suggested
•

CO2 Acquire the skill and knowledge of terms, facts, concepts, processes, techniques and principles of foundry industries

CO3 Apply the skill and knowledge of contents of principles of furnace technology.

CO4 Inquire of new skill and knowledge of foundry practises and developments therein.

CO5 Expose and to develop interest in the fields of design of casting

Program Outcome of this course

Course outcome (Course Skill Set)

Sl. No.	Description	POs

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1												
CO2												
CO3												
CO4												
CO5												

SurfaceTreatmentandFinishing				
Course Code	MMST215C	CIE Marks	50	
Teaching Hours/Week (L:P:SDA)	3:0:0	SEE Marks	50	
Total Hours of Pedagogy	40H	Total Marks	100	
Credits	3	Exam Hours	3	

CourseLearningobjectives:

Module-1

FundamentalsofElectroplating,galvanizing,Hotdipmetalcoating,thincoating,thincoating,chromiumplating,Nickelplating.Vacuumcoating,FVD&CVDmetalspraying-Methods,surfacepreparation,mechanical.

Teaching-	
LearningProces	ChalkandTalk/PowerPointPresentation
•	

Module-2

Properties of sprayed metals, Various types and plasma coating. Plastic coating of metal-

PVC coating Sphero dising process details, phosphate coating-mechanism of formation.

Teaching-	
LearningProcess	ChalkandTalk/PowerPointPresentation

Module-3

Testingofsurfacecoating-

Various methods used. Heat treatment methods, Annealing, Normalizing, Tempering, Casehardening methods, flamehardening sub-zero treatment.

Teaching-	
LearningProces	ChalkandTalk/PowerPointPresentation

Module-4

Heattreatmentmethodsforgears, spindles, cutting tools.

Teaching-	
Learning	ChalkandTalk/PowerPointPresentation
Process	·

Module-5

Advanced coating technologies: Hard facing, electrode position technique, nanocoating's, coating characterization.

Teaching-	
LearningProc	Chalkand Talk/Power Point Presentation
ess	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 19. Three Unit Tests each of 20 Marks
- 20. Two assignments each of **20 Marks**or**one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 46. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 47. The question paper will have ten full questions carrying equal marks.
- 48. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 49. Each full question will have a sub-question covering all the topics under a module.
- 50. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

Web links and Video Lectures (e-Resources):

•

Skill Development Activities Suggested

•

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

Sl. No.	Description	Blooms Level
CO1	Know about various techniques of simulation and modeling used to analyse manufacturing system.	
CO2	Undergo various case studies using real time simulation.	
CO3	understand variables involved and analyse output.	
CO4	Awareness of statistical techniques	
CO5	knowledge of simulation in real time applications	

Program Outcome of this course

Sl. No.	Description	POs

	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO1	3	3	3	2	1	1	1	2	1	2	1	2
CO2	3	3	3	3	2	2	1	2	1	2	0	2
CO3	3	3	3	3	2	2	1	2	1	2	0	2
CO4	3	3	3	3	2	1	1	2	1	2	0	2
CO5	3	3	3	2	1	1	1	2	1	2	1	2

N	Modelling, Simulation & A	Analysis of Manufacturing Sys	tem Title of the sub	oject
Course Code	J	MMST215D	CIE Marks	50
	rs/Week (L:P:SDA)	3:0:0	SEE Marks	50
Total Hours of	Pedagogy	40H	Total Marks	100
Credits		3	Exam Hours	3
Course Learn •	ing objectives:			
		Module-1		
-		: Basic Simulation Modeling, Lete and Continuous Systems.	imitation of Simulation,	Monte – Carlo
Teaching- Learning Process				
		Module-2		
	proaches: Modeling Con id and Credible Simulati	nplex Systems, Simulation Soft on Models.	ware, Basics Probability	y and Statistics,
Teaching- Learning Process				
110003		Module-3		
		eration: Selecting Input Proba riants, and Output Data Analys	•	ndom Number
Teaching-				
Learning				
Process				
	•	Module-4		
Statistical Te	chniques: Comparison o	f Alternative Systems, Variance	e Reduction Techniques).
Teaching- Learning Process				
1 10003	1	Module-5		
	udies: Discrete Event Si Simulation of Manufacturi	mulation, Simulation of Invent	ory Problems, Experime	ental Design and
Teaching- Learning Process				

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 21. Three Unit Tests each of 20 Marks
- 22. Two assignments each of 20 Marksorone Skill Development Activity of 40 marks to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 51. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 52. The question paper will have ten full questions carrying equal marks.
- 53. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 54. Each full question will have a sub-question covering all the topics under a module.
- 55. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. Simulation, Modeling and Analysis -Averill Law & David M.Kelt on, TMH 3rd Edition.
- 2. Discrete event and Simulation Systems Banks & Carson, Prentice Hall Inc.
- 3. System Simulation" Gordon, PHI.
- 4. System Simulation with Digital computer" Deo, PHI

5. Computer Simulation and Modeling" – Francis Neelamkovil, John Wiley & Sons.
Web links and Video Lectures (e-Resources):
• .
Skill Development Activities Suggested
•

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
CO1	Know about various techniques of simulation and modeling used to analyse manufacturing	
	system.	
CO2	Undergo various case studies using real time simulation.	
CO3	understand variables involved and analyse output.	
CO4	Awareness of statistical techniques	
CO5	knowledge of simulation in real time applications	

Program Outcome of this course

Sl. No.	Description	POs

Mapping of Cos and 1 os												
	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	3	3	2	1	1	1	2	1	2	1	2
CO2	3	3	3	3	2	2	1	2	1	2	0	2
CO3	3	3	3	3	2	2	1	2	1	2	0	2
CO4	3	3	3	3	2	1	1	2	1	2	0	2
CO5	3	3	3	2	1	1	1	2	1	2	1	2

Materials Processing Technology							
Course Code	MMST206	CIE Marks	50				
Teaching Hours/Week (L:P:SDA)	3;0;0;0	SEE Marks	50				
Total Hours of Pedagogy	40	Total Marks	100				
Credits	3	Exam Hours	3				

Course Learning objectives:

To acquaint students with the concept of polymer, ceramic materials and its processes and Additive Manufacturing (AM), various AM technologies, selection of materials for AM, and their applications in various fields

Module-1

Different type	of Materials, Types, distinctions, properties and applications of Metals, Ceramics and Polymers. es of polymer processing operations and engineering aspects: Mixing and compounding (twin screw
1	nbury and other mixing equipments in polymer processing), extrusion process, injection moulding,
	ng, thermoforming, rotational moulding, compression moulding, transfer moulding, reaction
	lding, calendering, roller and blade coating, film blowing, textile/fiber spinning technology
	laing, calendering, roner and blade coating, firm blowing, textile/liber spinning technology
Teaching- Learning	
Process	
110003	Module-2
T1	
1	or ceramic powder preparations, solid state reactions, Sintering operations, Types of sintering,
1	chanisms, Colloidal processing of ceramics, DLVO theory, Porous ceramics and ceramic fibres, Co-
precipitation	method, Sol-Gel process, products for engineering applications.
Teaching-	
Learning	
Process	
	Module-3
	facturing: Introduction: Traditional Manufacturing v/s Additive Manufacturing (AM); Computer
,	CAD) and AM; AM Process Chain; Application Level: Direct Processes, Rapid Prototyping, Rapid
	Manufacturing; Indirect Prototyping and Tooling, Indirect Manufacturing, Simultaneous Engineering
and Additive N	Manufacturing Technologies (AMT),
Teaching-	
Learning	
Process	
	Module-4
Process Support Struct	cure in AM, Generation of Physical LayerModelling: Virtual Prototyping. Tessellation (STL Format)
Process Support Struct and Tessellation	cure in AM, Generation of Physical LayerModelling: Virtual Prototyping. Tessellation (STL Format) on Algorithms. Defects in STL Filesand Repairing Algorithms. Various Slicing Procedures. Accuracy
Support Struct and Tessellationand Surface Qu	cure in AM, Generation of Physical LayerModelling: Virtual Prototyping. Tessellation (STL Format) on Algorithms. Defects in STL Filesand Repairing Algorithms. Various Slicing Procedures. Accuracy iality in AM, Effect of PartOrientation on Accuracy, Surface Finish, Build Time and Cost; Various
Support Struct and Tessellation and Surface Que Rapid Tooling	cure in AM, Generation of Physical LayerModelling: Virtual Prototyping. Tessellation (STL Format) on Algorithms. Defects in STL Filesand Repairing Algorithms. Various Slicing Procedures. Accuracy
Support Struct and Tessellation and Surface Quality Rapid Tooling Teaching-	cure in AM, Generation of Physical LayerModelling: Virtual Prototyping. Tessellation (STL Format) on Algorithms. Defects in STL Filesand Repairing Algorithms. Various Slicing Procedures. Accuracy itality in AM, Effect of PartOrientation on Accuracy, Surface Finish, Build Time and Cost; Various
Support Struct and Tessellatic and Surface Quapid Tooling Teaching-Learning	cure in AM, Generation of Physical LayerModelling: Virtual Prototyping. Tessellation (STL Format) on Algorithms. Defects in STL Filesand Repairing Algorithms. Various Slicing Procedures. Accuracy itality in AM, Effect of PartOrientation on Accuracy, Surface Finish, Build Time and Cost; Various
Support Struct and Tessellation and Surface Quality Rapid Tooling Teaching-	cure in AM, Generation of Physical LayerModelling: Virtual Prototyping. Tessellation (STL Format) on Algorithms. Defects in STL Filesand Repairing Algorithms. Various Slicing Procedures. Accuracy hality in AM, Effect of PartOrientation on Accuracy, Surface Finish, Build Time and Cost; Various Techniques. Introductionto Reverse Engineering
Support Struct and Tessellatic and Surface Quantity Tooling Teaching-Learning Process	cure in AM, Generation of Physical LayerModelling: Virtual Prototyping. Tessellation (STL Format) on Algorithms. Defects in STL Filesand Repairing Algorithms. Various Slicing Procedures. Accuracy hality in AM, Effect of PartOrientation on Accuracy, Surface Finish, Build Time and Cost; Various Techniques. Introductionto Reverse Engineering Module-5
Support Struct and Tessellation and Surface Que Rapid Tooling Teaching-Learning Process	cure in AM, Generation of Physical LayerModelling: Virtual Prototyping. Tessellation (STL Format) on Algorithms. Defects in STL Filesand Repairing Algorithms. Various Slicing Procedures. Accuracy hality in AM, Effect of PartOrientation on Accuracy, Surface Finish, Build Time and Cost; Various Techniques. Introductionto Reverse Engineering Module-5 MM: Different Materials used for AM. Use of Multiple Materials, Multi-Functional and Graded
Support Struct and Tessellation and Surface Quantification Reaching Learning Process Materials for And Materials in All	cure in AM, Generation of Physical LayerModelling: Virtual Prototyping. Tessellation (STL Format) on Algorithms. Defects in STL Filesand Repairing Algorithms. Various Slicing Procedures. Accuracy hality in AM, Effect of PartOrientation on Accuracy, Surface Finish, Build Time and Cost; Various Techniques. Introductionto Reverse Engineering Module-5 MM: Different Materials used for AM. Use of Multiple Materials, Multi-Functional and Graded M. Role of Solidification Rate. Evolution of Non-Equilibrium Structure, Structure Property
Support Struct and Tessellatic and Surface Quantition Rapid Tooling Teaching-Learning Process Materials for A Materials in Al Relationship.	cure in AM, Generation of Physical LayerModelling: Virtual Prototyping. Tessellation (STL Format) on Algorithms. Defects in STL Filesand Repairing Algorithms. Various Slicing Procedures. Accuracy hality in AM, Effect of PartOrientation on Accuracy, Surface Finish, Build Time and Cost; Various Techniques. Introductionto Reverse Engineering Module-5 MM: Different Materials used for AM. Use of Multiple Materials, Multi-Functional and Graded
Support Struct and Tessellation and Surface Quantification Reaching Learning Process Materials for And Materials in All	cure in AM, Generation of Physical LayerModelling: Virtual Prototyping. Tessellation (STL Format) on Algorithms. Defects in STL Filesand Repairing Algorithms. Various Slicing Procedures. Accuracy hality in AM, Effect of PartOrientation on Accuracy, Surface Finish, Build Time and Cost; Various Techniques. Introductionto Reverse Engineering Module-5 MM: Different Materials used for AM. Use of Multiple Materials, Multi-Functional and Graded M. Role of Solidification Rate. Evolution of Non-Equilibrium Structure, Structure Property

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 23. Three Unit Tests each of 20 Marks
- 24. Two assignments each of **20 Marks**or**one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 23. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 24. The question paper will have ten full questions carrying equal marks.
- 25. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 26. Each full question will have a sub-question covering all the topics under a module.
- 27. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. Principles of Polymer Processing, Tadmor; 2nd (ed.), Wiley, 2006.
- 2. Polymer processing fundamentals, Tim A. Osswald, Hanser (eds.); 1998
- 3. Polymer Processing, David H. Morton-Jones, Routledge (eds.); Chapman & Hall, 1989
- 4. Ceramic Materials: Science and Engineering, C. Barry Carter, M. Grant Norton; 2nd (ed.), Springer, 2013
- 5. Ceramic Processing and Sintering, Mohamed N. Rahaman; 2nd (ed.), Marcel Dekker Inc., 2003.
- 6. Chemical Processing of Ceramics, Burtrand Lee, Sridhar Komarneni; 2nd (ed.), CRC Press, 2010.
- 7. Solidification and Crystallization Processing in Metals and Alloys, HasseFredriksson; Wiley, 2012
- 8. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, by I.Gibson, D. Rosen and B. Stucker, Springer.
- 9. Rapid Prototyping: Principles and Applications in Manufacturing by Chua C. K. and L. K. Fai, World ScientificPublishing Co., Inc.
- 10. Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid manufacturing by AndreasGebhardt, Hanser Publishers.
- 11. Laser Induced Materials and Processes for Rapid Prototyping by Lu, Fuh and Wong, Springer.

Web links and Video Lectures (e-Resources):

Skill Development Activities Suggested

•

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

Sl. No.	Description	Blooms Level		
CO1	Gain knowledge on Polymers and its processing for different application			
CO2	Identify the potential application of powders and its processing			
CO3	Identify areas where the knowledge of additive manufacturing can be applied through the theoretical studies.			
C04	Describe portrayal of additive manufacturing and prototyping, their concepts, techniques, recent trends and challenges for the future.			
CO5	Assess the areas where additive manufacturing can make a greater contribution to industrial capabilities			

Program Outcome of this course

Sl. No.	Description	POs

. Alphing of dod and 1 do												
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	3	3	2	1	1	1	2	1	2	1	2
CO2	3	3	3	3	2	2	1	2	1	2	0	2
CO3	3	3	3	3	2	2	1	2	1	2	0	2
CO4	3	3	3	3	2	1	1	2	1	2	0	2
CO5	3	3	3	2	1	1	1	2	1	2	1	2

	Ма	terial Characterization Labor	atory				
Course	Code	MMSTL207	CIE Marks	50			
Teaching Hours/Week (L:T:P: S) 01-00-02-0 SEE Marks							
Credits		2	Exam Hours	3			
• .	e objectives:						
Sl.NO		Experiments					
1	Laboratory to tests based on the tensile strength etc.	ne mechanical properties of ma	terials, e.g., hardness, ela	astic modulus,			
2	Laboratory to tests based on the tensile strength etc. after various		terials, e.g., hardness, ela	astic modulus,			
3	Applications of metallography a	and optical microscopy, phase	analysis using microscop	ic information,			
4	Laboratory tests on microstructure	es of metal, ceramic and polymer i	naterials using optical micro	oscopy and SEM.			
5	Hands on experience on Phase ide	entification using X-ray Diffraction	1				
6	Study the effect of quenching med	lia on microstructure and hardness	of high-speed steels.				
7	· · · · · · · · · · · · · · · · · · ·						
	alloys.						
8	Analysis of metals deformed s	urface by using image process	sing technique				
Demo	onstration						
1	Hands on experience on Powd	er characterization using XRD,	SEM and BET, gas pycn	ometer			
2	Hands on experience on Thermal properties of materials, identification of materials based on their TG, DSC, DMA characteristic responses						
3	Sintering and heat treatment furnaces, Thermocouple calibration, Fabrication and testing of composites, Nano-composites, Wear analysis, Welding of stainless steel, studies and experiments on Micro Machining Center, Unconventional machining, Porosity studies, Study of solidification software such as Pro-Cast, computational design of gating system, Commercial CAD/CAM softwares.						
	e outcomes (Course Skill Set): end of the course the student will	be able to:					

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. The student has to secure not less than 40% of maximum marks in the semester-end examination(SEE). In total of CIE and SEE student has to secure 50% maximum marks of the course.

Continuous Internal Evaluation (CIE):

CIE marks for the practical course is **50 Marks**.

The split-up of CIE marks for record/journal and test are in the ratio **60:40**.

- Each experiment to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments designed by the faculty who is handling the laboratory session and is made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled down to 30 marks (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct 01 tests for 100 marks, test shall be conducted after the 14th week of the semester.
- In test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability.
- **The test marksis scaled down to 20 marks** (40% of the maximum marks).

The Sum of **scaled-down** marks scored in the report write-up/journal and marks of test is the total CIE marks scored by the student.

Semester End Evaluation (SEE):

SEE marks for the practical course is 50 Marks.

SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the University.

All laboratory experiments are to be included for practical examination.

(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners.

Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.

Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure

and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners)

Change of experiment is allowed only once and 10% Marks allotted to the procedure part to be made zero.

The duration of SEE is 03 hours

Suggested Learning Resources:

.

Ability Enhancement Course

IOT IN MANUFACTURING					
Course Code	MMST258A	CIE Marks	50		
Teaching Hours/Week (L:P:SDA)	00:02/01:00	SEE Marks	50		
Total Hours of Pedagogy	30/15	Total Marks	100		
Credits	01	Exam Hours	02		
Examination Type (SEE)		Theory			

Course Learning objectives:

The course is designed to offer fundamentals of IoT in manufacturing and their applications in the business world. Learners will gain deep insights into how smartness is being harnessed and what needs to be done to overcome some of the challenges in the field of Mechanical Engineering

Module-1

Introduction to Industrial IoT: IoT background, History and definition, IoT enabling factors, IoT use cases, IoT key technologies, I-IoT – Fourth industrial revolution, use cases of the I-IoT, Similarities and differences of IoT and I-IoT, IoTanalytics and AI, Industry environment scenarios covered by I-IoT.

Teaching-
Learning
Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Module-2

Understanding the Industrial process and devices: Industrial process, automation in the industrial process, control and measurement systems, types of industrial process, The CIM pyramid, CIM pyramid architecture – devices and networks, CIM network, The I-IoT data flow, The Industrial IoT data flow in a factory, The edge device, The Industrial IoT data flow in the cloud. Industrial data flow and devices, The I-IoT data flow in the factory, Measurement and the actuator chain.

Teaching-
Learning
Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities & assignments.

Module-3

Understanding of Node MCU: Open Source Microcontroller Platform, Node GPIO Pins, and Basics of Electronics. Introduction toEsp8266, Wifi Network, Web serve. Cloud Servers. IoT Sensors- Temperature, Humidity Sensor, Light, Gyro, Inclination, Magneto, Pressure, Flow, Aqua, Position, vibration and acoustic sensors. Protocol -MQTT Protocol, HTTP vs MQTT, Creating Adafruit account, Using Adafruit to read sensors value and send data to Node MCU

Teaching-
Learning
Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Module-4

Implementing the I-IoT data flow: Discovering OPC, OPC classic, The data model and retrieving, data in OPC classic, OPC UA, The OPC UA information model, OPC UA sessions, OPC UA security model, The OPC UA data exchange, OPC UA notifications, Understanding the I-IoT edge, Features of the edge – edge gateway, edge tools, edge computing, The I-IoT edge architecture, Edge implementations – Azure IoT edge, Green grass, Android IoT, Node red, Docker edge, Intel IoT gateway, Edge Internet protocols.

Teaching-
Learning
Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Module-5

Understanding of I-IoT data loggers: Internal architecture of I-IoT data logger, communication protocols, I/O modules (Digital and Analog). Configuring I-IoT data logger through a web based application, Establishing communication between PLC and I-IoT data logger. Interfacing of industrial sensor with I-IoT data logger. Development of cloud based applications for the Mechatronics systems using the I-IoT data logger thorough web portal.

Teaching-
Learning
Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks (25 marks out of 50) and for the SEE minimum passing mark is 40% of the maximum marks (20 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous internal Examination (CIE)

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examinations (SEE)

- Thequestion paper shall consist of ten questions, witheach question carrying 10 marks.
- There shall be**two questions from each module.** Each question may or may not include **sub-questions**(with a**maximum of two sub-questions**). The**mark distribution**for sub-questions may follow any of the following formats: **5+5**, **4+6**, **or 3+7**.
- Students are required toanswer any five full questions, selecting one full question from each module.
- In order to pass the SEE, students must obtain aminimum of 40% of the maximum marks allotted for the examination.
- The maximum duration of the examination is 02 hours

Textbooks

- 1. Oliver Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things Key, Applications and Protocols", Wiley Publications, 2011. ISBN: 1119966701.
- 2. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", A press, 1st Edition, 2017. ISBN: 1484220463.
- 3. RMD SundaramShriram K Vasudevan, Abhishek S Nagarajan, "Internet of Things", Wiley Publications, 2019. ISBN: 8126578378.

Web links and Video Lectures (e-Resources):

- https://youtu.be/hv-aBonZMRQ?list=PLWbMIWDTOauBvP0ZxvoIshg55WPMF37UI
- https://youtu.be/De8MQWbhu3k

Skill Development Activities Suggested

- Individual projects on topics covered in class. Students will choose a real life problems related to the discussed topics and implement the solution by using techniques and strategies discussed in the class. For each project, students have to submit a report and present a seminar.
- Assignments, Quiz and Industrial Visit on relevant topic of the course.

Program Outcome of this course

At the end of the course the student will be able to:

Sl. No.	Description Blooms Level	Blooms Level
CO1	Use IoT Sensors for data logging and communicate the data to cloud	L1
CO2	Use IoT Sensors data in AI & ML	L1
CO3	Automate different process using sensors and control components	L2
CO4	Understand IOT alliances/hardware and standards	L1

Mapping of COS and Pos (Note: High -3, Medium -2, and Low -1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	1	2	2	2	2
CO2	3	2	2	2	1	1	2
CO3	3	2	1	2	2	1	2
CO4	3	2	1	2	1	2	1
CO5	3	2	1	3	1	2	1

MICRO MACHINING PROCESSES				
Course Code	MMST258B	CIE Marks	50	
Teaching Hours/Week (L:P:SDA)	00:02/01:00	SEE Marks	50	
Total Hours of Pedagogy	30/15	Total Marks	100	
Credits	01	Exam Hours	02	
Examination Type (SEE)		Theory		

Course Learning objectives:

- Understand the Micro System design, Material properties, micro fabrication technologies etc.
- Study the Microstructure of materials, phase transformations in crystalline solids and smart materials.
- Learn about the various processes and special machining's.
- Understand the micro-and ultra precision machining.
- Awareness on semiconductors manufacturing using micro fabrication technologies.

Module-1

INTRODUCTION: Introduction to Micro System design, Material properties, micro fabrication technologies. Structural behavior, sensing methods, micro scale transport – feedback systems.

Teaching-
Learning
Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Module-2

MICROMECHANICS: Microstructure of materials, its connection to molecular structure and its consequences on macroscopic properties – Phase transformations in crystalline solids including martensite, ferroelectric, and diffusional phase transformations, twinning and domain patterns, smart materials.

Teaching-
Learning
Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Module-3

BASIC MICRO – FABRICATION: Bulk Processes – Surface Processes – Sacrificial Processes and Bonding Processes – Special machining: Laser beam micro machining – Electrical Discharge Machining – Ultrasonic Machining – Electro chemical Machining, Electron beam machining.

Teaching-Learning Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Module-4

MECHANICAL MICROMACHINING: Theory of micromachining – Chip formation – Size effect in micromachining – micro turning, micro milling, micro drilling – Micromachining tool design – Precision Grinding – Partial ductile mode grinding – Ultra precision grinding – Binder less wheel – Free form optics.

Teaching- | Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating

Learning Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Module-5

SEMICONDUCTORSMANUFACTURING: Basic requirements—clean room—yield model—Wafer IC manufacturing—feature micro fabrication technologies—PSM—IC industry—New Materials—Bonding and layer transfer—devices—micro fabrication industries.

Teaching	5.
Learning	,
n	

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Process

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks (25 marks out of 50) and for the SEE minimum passing mark is 40% of the maximum marks (20 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous internal Examination (CIE)

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

 Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examinations (SEE)

- Thequestion paper shall consist of ten questions, witheach question carrying 10 marks.
- There shall be**two questions from each module.** Each question may or may not include **sub-questions**(with a**maximum of two sub-questions**). The**mark distribution**for sub-questions may follow any of the following formats: 5+5, 4+6, or 3+7.
- Students are required to answer any five full questions, selecting one full question from each module.
- In order to pass the SEE, students must obtain aminimum of 40% of the maximum marks allotted for the examination.
- The maximum duration of the examination is 02 hours

1. Textbooks

- 1 SamiFranssila, "IntroductiontoMicroFabrication", John Wileyandsons Ltd., UK, 2004, ISBN: 978-0-470-85106-7.
- 2 Madore J, "Fundamental of Micro Fabrication", CRCPress, 2002
- 3 MarkJ. Jackson, "Microfabrication and Nanomanufacturing", CRCPress, 2006.
- 4 Peter Van Zant, "Microchipfabrication", McGraw Hill, 2004.

Sl. No.	I I				
1	An ability to independently carry out research/investigation and development work to solve practical problems	PO1			
2	An ability to write and present a substantial technical report/document.	PO2			
3	To be able to demonstrate a degree of mastery over the area as per the specialization of the program.	PO3			
4	Understand contemporary issues in manufacturing engineering and develop relationship between product design and manufacturability to create safe, reliable, and cost-effective products.	PO4			
5	Understand the process of converting customer needs into engineering specifications to create product designs that are sensitive to user needs and robust against unanticipated use and misuse	PO5			
6	Employ advanced prototyping methods to shorten design cycles and narrow alternatives without restricting innovation.	PO6			
7	Understand and debate the roles and responsibilities of a product designer/manufacturer on society.				

Mapping of COS and Pos (Note: High – 3, Medium – 2, and Low – 1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	2	2	3	3	3	2
CO2	1	1	2	2	3	-	2
CO3	2	2	2	3	3	-	2

ARTIFICIAL INTELLIGENCE IN MANUFACTURING					
Course Code	MMST258C	CIE Marks	50		
Teaching Hours/Week (L:P:SDA)	00:02/01:00	SEE Marks	50		
Total Hours of Pedagogy	30/15	Total Marks	100		
Credits	01	Exam Hours	02		
Examination Type (SEE)		Theory			

Course Learning objectives:

- To understand the modern manufacturing concepts.
- To learn the concept of AI based methods for process controls.
- To analyse the automated material handling systems.

Module-1

Introduction to Modern Manufacturing and AI Based Applications: Introduction to Modern Manufacturing Process, Industry 4.0, Introduction to AI and its applications in manufacturing, Design in Manufacturing and AI Requirements.

Teaching-Learning Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Module-2

AI based Methods for Process Control & Monitoring: Machine Learning methods, AI based Monitoring and control of discrete manufacturing process, Online process monitoring in additive manufacturing, Industrial Machine Vision, Development of Digital Twins.

Teaching- Learning Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Module-3

AI based Design Space Exploration: Multi objective heuristic search for DSE, Algorithms for Customizable Manufacturing, Allocation and Layout, Scheduling for flexible manufacturing systems.

Teaching- Learning Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Module-4

AI & Robotics: AI based Robot Architecture & Applications in Automated Manufacturing, Robot Vision & Motion, Multi agent and swarm robotics, Robot to Robot and Robot to human coordination (Cobots - collaborative robotics) Reliable & Trusted AI in Robotics.

Teaching- Learning Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Module-5

Automated material Handling Storage: Material functions, types of material handling equipment, analysis of material handling systems, design of system, conveyor system, automated guided vehicle systems, automated storage/retrieval systems, caroused storage systems work in process storage, interfacing handling & storage with manufacturing.

Teaching- Learning Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks (25 marks out of 50) and for the SEE minimum passing mark is 40% of the maximum marks (20 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous internal Examination (CIE)

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examinations (SEE)

- Thequestion paper shall consist of ten questions, witheach question carrying 10 marks.
- There shall be**two questions from each module.** Each question may or may not include **sub-questions**(with a**maximum of two sub-questions**). The**mark distribution**for sub-questions may follow any of the following formats: **5+5**, **4+6**, **or 3+7**.
- Students are required to answer any five full questions, selecting one full question from each
- In order to pass the SEE, students must obtain aminimum of 40% of the maximum marks allotted for the examination.
- The maximum duration of the examination is 02 hours

Textbooks

- 1. Artificial Intelligence: A Modern Approach, Stuart J. Russell and Peter Norvig, 3rd Edition, Prentice Hall, 2009.
- 2. Deep Learning Ian Goodfellow, YoshuaBengio, Aaron Courville, MIT Press, 2018
- 3. Additive manufacturing of Metals: The Technology, Materials , Design and Production; Ed. Li Yang, et al.; Springer International Publishing AG 2017
- 4. Laser Materials Processing, by W M Steen, J. Mazumder, 4th Ed. Springer
- 5. Handbook of Industrial Robotics by Shimon Y. Nof (Editor), ISBN 9788126540303.

Web links and Video Lectures (e-Resources):

- https://www.youtube.com/watch?v=lTsvhSYstAE
- https://www.forbes.com/sites/bernardmarr/2018/09/02/what-is-industry-4-0-heres-a-super-easy-explanation-for-anyone/?sh=162dc3409788
- https://professional.mit.edu/news/articles/4-ways-ai-will-change-design-and-manufacturing
- https://theconversation.com/five-ways--intelligence-can-help-space-exploration-153664
- https://www.systema.com/automated-material-handling-systems#:~:text=Automated%20material%20handling%20systems%20ensure,even%20in%20two%20separate%20buildings.

Course outcome

At the end of the course the student will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Learn how AI methods can be used in a manufacturing workflow for process optimization and control	L1, L2, L3, L4
CO2	Discover AI/machine learning methods that enable design automation and customization	L1, L2, L3, L4,L5
CO3	Explore AI/machine learning methods for performance-driven design that automatically translate functional specifications of objects to manufacturable designs	L1, L2, L3, L4,L5
CO4	Learn AI based Robot Architecture & Applications in Automated Manufacturing, Robot Vision & Motion, Multi agent and swarm robotics.	L1, L2, L3, L4,L5
CO5	Explore Material functions, types of material handling equipment, analysis	L1, L2, L3,
	of material handling systems, design of system, conveyor system.	L4 L2, L3,

Program Outcome of this course

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	To be able to demonstrate a degree of mastery over the area as per the specialization of the program.	PO3
4	Understand contemporary issues in manufacturing engineering and develop relationship between product design and manufacturability to create safe, reliable, and cost-effective products.	PO4
5	Understand the process of converting customer needs into engineering specifications to create product designs that are sensitive to user needs and robust against unanticipated use and misuse	PO5
6	Employ advanced prototyping methods to shorten design cycles and narrow alternatives without restricting innovation.	PO6
7	Understand and debate the roles and responsibilities of a product designer/manufacturer on society.	PO7

Mapping of COS and Pos (Note: High - 3, Medium - 2, and Low - 1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	1	1	2	2	3	3	2
CO2	1	2	2	2	3	3	2
CO3	1	2	2	2	3	3	2
CO4	1	2	2	2	3	3	2
CO5	1	2	2	2	3	3	2

MACHINE LEARNING					
Course Code	MMST258D	CIE Marks	50		
Teaching Hours/Week (L:P:SDA)	00:02/01:00	SEE Marks	50		
Total Hours of Pedagogy	30/15	Total Marks	100		
Credits	01 Exam Hours 02		02		
Examination Type (SEE)	The	ory			

Course Learning objectives:

To discover patterns in the user data and then make predictions based on these and intricate patterns for Answering business questions and solving business problems.

Module-1

Introduction, Concept Learning and Decision Trees Learning Problems – Designing Learning systems, Perspectives and Issues – Concept Learning – Version Spaces and Candidate Elimination Algorithm – Inductive bias – Decision Tree learning – Representation – Algorithm – Heuristic Space Search

Teaching-Learning Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Module-2

Neural Networks and Genetic Algorithms: Neural Network Representation – Problems – Perceptron"s – Multilayer Networks and Back Propagation Algorithms – Advanced Topics – Genetic Algorithms – Hypothesis Space Search – Genetic Programming – Models of Evolution and Learning.

Teaching-Learning Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Module-3

Bayesian and Computational Learning Bayes Theorem – Concept Learning – Maximum Likelihood – Minimum Description Length Principle – Bayes Optimal Classifier – Gibbs Algorithm – Naïve Bayes Classifier – Bayesian Belief Network – EM Algorithm – Probably Learning – Sample Complexity for Finite and Infinite Hypothesis Spaces – Mistake Bound Model

Teaching-Learning Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Module-4

Instant Based Learning and Learning Set of Rules: K- Nearest Neighbor Learning – Locally Weighted Regression – Radial Basis Functions – Case-Based Reasoning – Sequential Covering Algorithms – Learning Rule Sets – Learning First Order Rules – Learning Sets of First Order Rules – Induction.

Teaching-
Learning
Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities & assignments.

49

Module-5

Analytical Learning and Reinforced Learning: Perfect Domain Theories – Explanation Based Learning – Inductive Analytical Approaches - FOCL Algorithm – Reinforcement Learning – Task – Q-Learning – Temporal Difference Learning

Teaching-Learning Process

Chalk and talk method and Power Point presentation and YouTube videos, Animation videos, creating right time in classroom discussions. Giving activities &assignments.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks (25 marks out of 50) and for the SEE minimum passing mark is 40% of the maximum marks (20 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous internal Examination (CIE)

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examinations (SEE)

- Thequestion paper shall consist of ten questions, witheach question carrying 10 marks.
- There shall be**two questions from each module.** Each question may or may not include **sub-questions**(with a**maximum of two sub-questions**). The**mark distribution**for sub-questions may follow any of the following formats: **5+5**, **4+6**, **or 3+7**.
- Students are required to answer any five full questions, selecting one full question from each module.
- In order to pass the SEE, students must obtain aminimum of 40% of the maximum marks allotted for the examination.
- The maximum duration of the examination is 02 hours

1.

Textbooks

- (1) Tom M. Mitchell, "Machine Learning", McGraw-Hill Education (INDIAN EDITION), 2013.
- (2) Ethem Alpaydin, "Introduction to Machine Learning", 2nd Ed., PHI Learning Pvt. Ltd., 2013.

Reference Books

- (1) Stephen Marsland, Machine Learning: An Algorithmic Perspective
- (2) T. Hastie, R. Tibshirani, J. H. Friedman, "The Elements of Statistical Learning", Springer; 1st Edition, 2001
- (3) Tom Mitchell, Machine Learning,

Web links and Video Lectures (e-Resources):

- VTU e-Shikshana Program
- VTU EDUSAT Program

Course Outcomes

At the end of the course the student will be able to:

Sl. No.	Description Blooms Level	Blooms Level	
CO1	Design the learning system for learning problem with this basic knowledge	L2	
CO2	Apply effectively neural networks and genetic algorithms for appropriate applications.	L3	
CO3	Apply bayesian techniques for classification problems	L2	
CO4	Derive effectively learning rules for appropriate learning systems	L2	
CO5	Choose and differentiate reinforcement and analytical learning techniques	L3	

Program Outcome of this course

Sl. No.	Description POs	POs
1.	To prepare students to meet the industrial requirements at global level competitiveness.	PO1
2.	To develop the students analytical skills to enable them to understand real world problems and formulate solutions.	PO2
3.	To impart basic education to students in the areas of Design Engineering, Manufacturing Engineering and Thermal Sciences that will enable them to take up higher studies in these areas.	PO3
4.	To allow students to work in teams through group project works and thus help them achieve interpersonal and communication skills.	PO4
5.	To inculcate the habit of lifelong learning, adherence to ethics in profession, concern for environmental and regard for good professional practices.	PO5
6.	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	PO6
7.	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	PO7

Mapping of COS and Pos (Note: High – 3, Medium – 2, and Low – 1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	3	3	3	2	2	2
CO2	3	3	3	3	3	3	2
CO3	3	3	3	2	2	1	1
CO4	3	3	3	2	2	3	3
CO5	3	3	3	3	3	3	1