APPLIED PHYSICS HANDBOOK

 Physical Constants and Formulae

 Physical Constants and Formulae}

Basic Sciences and Humanities (Physics) Composite Board
Visveswaraya Technological Univesrsity
Jnana Sangama, VTU Main Rd, Machhe, Belagavi, Karnataka 590018

Contents

I PHYSICAL CONSTANTS and STANDARD VALUES 3
1 Physical constants and Standard Values for all Streams 5
1.1 Physical Constants 5
1.2 Stadard Values 5
II FORMULAE 7
2 Applied Physics for CSE Stream 9
2.1 Module-1 : LASER and Optical Fibers 9
2.1.1 LASER 9
2.1.2 Optical Fibers 9
2.2 Module -2 : Quantum Mechanics 10
2.3 Module -3: Quantum Computing 11
2.4 Module -4 : Electrical Properties of Materials and Applications 12
2.4.1 Electrical conductivity in Solids 12
2.4.2 Superconductivity 12
2.5 Module -5 : Application of Physics in Computing 12
2.5.1 Physics of Animation 12
2.5.2 Statistical Physics for Computing 13
3 Applied Physics for EEE Stream 15
3.1 Module -1: Quantum Mechanics 15
3.2 Module-2 : Electrical Properties of Materials 16
3.2.1 Electrical conductivity in Solids 16
3.2.2 Dielectrics 17
3.2.3 Superconductivity 17
3.3 Module - 3 : LASER and Optical Fibers 18
3.3.1 LASER 18
3.3.2 Optical Fibers 18
3.4 Module - 4 : Maxwell's Equations and EM Waves 19
3.4.1 Vector Calculus 19
3.5 Module - 5 : Semiconductors and Devices 19
3.5.1 Electrical Conductivity in Semiconductors 19
3.5.2 Hall Effect 19
4 Applied Physics for CV Stream 21
4.1 Module-1 : Oscillations and Shock waves 21
4.1.1 Oscillations 21
4.1.2 Shock Waves 22
4.2 Module-2 : Elasticity 22
4.3 Module-3 : Acoustics, Radiometry \& Photometry 23
4.3.1 Acoustics 23
4.4 Module -2 : LASER and Optical Fibers 23
4.4.1 LASER 23
4.4.2 Optical Fibers 23
4.5 Module-5 : Natural Hazards and Safety 24
5 Applied Physics for ME Stream 25
5.1 Module-1 : Oscillations and Shock waves 25
5.1.1 Oscillations 25
5.1.2 Shock Waves 26
5.2 Module-2 : Elasticity 26
5.3 Module-3 : Thermoelectric Materials 27
5.3.1 Thermoelectricity 27
5.4 Module-4 : Cryogenics 27
5.5 Module-5 : Materials and Characterization Techniques 27

Part I

PHYSICAL CONSTANTS and STANDARD VALUES

Chapter 1

Physical constants and Standard Values for all Streams

1.1 Physical Constants

Acceleration due to Gravity $g=9.8 \mathrm{~ms}^{-2}$
Avogadro Number $6.023 \times 10^{26} \mathrm{Jkmole}^{-1} \mathrm{~K}^{-1}$
Boltzmann Constant $k=1.38 \times 10^{-23} \mathrm{JK}^{-1}$
Charge on the electron $e=-1.6 \times 10^{-19} \mathrm{C}$
Charge on the Proton $e=1.6 \times 10^{-19} \mathrm{C}$
Magnetic Peameability of Free Space $\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$
Permittivity of Free Space $\epsilon_{0}=8.854 \times 10^{-23} \mathrm{Fm}^{-1}$
Planck's Constant $h=6.625 \times 10^{-34} J S$
Rest Mass of the Electron $m_{e}=9.1 \times 10^{-31} \mathrm{Kg}$
Rest Mass of the Proton $m_{p}=1.6726 \times 10^{-27} \mathrm{Kg}$
Rest Mass of the Neutron $m_{n}=1.6749 \times 10^{-27} \mathrm{Kg}$
Speed of Light $c=3 \times 10^{8} \mathrm{~ms}^{-1}$
Universal Gas constant $R=8.314 \mathrm{Jmole}^{-1} \mathrm{~K}^{-1}$

1.2 Stadard Values

Youngs Modulus of Steel $E=200 G P a$
Rigidity Modulus of Steel $K=80 G P a$

Bulk Modulus of Steel $K=160 G P a$
Fermi Energy of Copper $E_{F}=7 \mathrm{eV}$
Horizontal Component of Earth's Magnetic Field $B_{H}=0.3 \times 10^{-4} T$

Part II

FORMULAE

Chapter 2

Applied Physics for CSE Stream

2.1 Module-1 : LASER and Optical Fibers

2.1.1 LASER

1. Expression for the number of photons emitted per t seconds $N=\frac{P t \lambda}{h c}$ Photons.
P is LASER Power Output in watt, t is the time in second,
λ is the wavelength of LASER in m,
h is Planck's Constant and
c is the speed of light.
2. The Boltzmann relation $N_{2}=N_{1} e^{-\frac{h c}{k k T}}$
N_{2} is the Number of Atoms in the higher energy state.
N_{1} is the Number of Atoms in the Lower Energy State,
λ is the wavelength of LASER,
kis Boltzmann Constant,
T is Absolute Temperature.

2.1.2 Optical Fibers

1. Expression for Numerical Aperture of an Optical Fiber $N A=\sqrt{\frac{n_{1}^{2}-n_{2}^{2}}{n_{0}^{2}}}$ n_{0} is the RI of the surrounding medium,
n_{1} is the RI of the Core,
n_{2} is the RI of Cladding.
2. The Acceptance Angle $\theta=\operatorname{Sin}^{-1}(N A)$
3. Attenuation Co-efficient $\alpha=\frac{-10}{L} \log _{10}\left(\frac{P_{o}}{P_{i}}\right) d B / \mathrm{km}$
L is the length of the fiber in km.
P_{o} is the Power Output of the fiber in W.
P_{i} is the Power input of the fiber in W.
$d B$ is the unit in decibel.

2.2 Module -2 : Quantum Mechanics

1. The relation between Kinetic Energy and Momentum $E=\frac{p^{2}}{2 m}$, m is the mass of the particle in $k g$, p is the momentum of the particle in $N s$.
2. Energy of the photon $E=h v=\frac{h c}{\lambda}$,
h is Planck's Constant, v is the frequency of the radiation in Hz , λ is the wavelength of the radiation in m, c is the speed of light.
3. de Broglie Wavelength $\lambda=\frac{h}{p}=\frac{h}{m v}$ in meter
h is Planck's Constant, m is mass of the particle in kg , v is the velocity of the particle $m s^{-1}$.
4. de Broglie Wavelength $\lambda=\frac{h}{\sqrt{2 m E}}$
h is Planck's Constant,
m is mass of the particle in kg ,
E is the Kinetic Energy of the particle in J.
5. de Broglie Wavelength $\lambda=\frac{h}{\sqrt{2 m q V}}$
h is Planck's Constant,
m is the mass of the particle in kg ,
q is the charge on the particle in C,
V is the accelerating potential in V.
6. de Broglie Wavelength $\lambda=\frac{h}{\sqrt{2 m_{e} e V}}=\frac{12.27 \times 10^{-10}}{\sqrt{V}} \mathrm{~m}$
h is Planck's Constant,
m_{e} is the mass of the electron in kg ,
e is the charge on the electron in C,
V is the electron accelerating potential in V.
7. Heisenberg's Uncertainty Principle
$\Delta x \Delta p_{x} \geq \frac{h}{4 \pi}$
$\Delta E \Delta T \geq \frac{h}{4 \pi}$
Δx is the uncertainty in the measurement of Position,
ΔP is the uncertainty in the measurement of Momentum,
ΔE is the uncertainty in the measurement of Energy,
ΔT is the uncertainty inn the measurement of transistion time.
8. The uncertainty in the measurment of momentum $\Delta P=m \Delta v$.
Δv is the uncertainty in the measurment of velocity.
9. Eigen Energy Values for a Particle in a one dimensional potential well of infinite depth $E_{n}=\frac{n^{2} h^{2}}{8 m a^{2}}$,
$n=1,2,3 \ldots$ for the Ground, First and Second energy states etc.,
h is Planck's Constant,
m is the mass of the particle in $k g$,
a is the width of the potential well in m.

2.3 Module -3 : Quantum Computing

1. The wave function in Ket notation $|\psi\rangle$ (Ket Vector), ψ is the wave function.
$|\psi\rangle=\binom{\alpha_{1}}{\alpha_{2}}$
2. The matrix for of the states $|0\rangle$ and $|1\rangle$.
$|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$
3. Identity Operator $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
4. Pauli Matrices

- $\sigma_{0}=I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
- $\sigma_{1}=\sigma_{x}=X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
- $\sigma_{2}=\sigma_{y}=Y=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$.
- $\sigma_{3}=\sigma_{z}=Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

5. A Matrix is said to be Unitary Matrix is $U^{\dagger} U=I$,

Here U^{\dagger} is the conjugate-transpose of a matrix U.
6. A matrix A is Hermitian if $A^{\dagger}=A$
7. The wave function in Bra notation $\langle\psi|$ (bra Vector), ψ is the wave function. $\langle\psi|=\left(\begin{array}{ll}\alpha_{1}^{*} & \alpha_{2}^{*}\end{array}\right)$
8. Inner Product $\langle\psi \mid \phi\rangle=\langle\psi| *|\phi\rangle$. Here $\langle\psi|$ is a Row Vector and $|\phi\rangle$ is a Column Vector. The result is always a scalar product.
9. The product $\langle\psi \mid \psi\rangle=|\psi|^{2}$, the probability density.
10. Orthogonality $\langle\psi \mid \phi\rangle=0$

2.4 Module -4 : Electrical Properties of Materials and Applications

2.4.1 Electrical conductivity in Solids

1. The Fermi Factor $f(E)=\frac{1}{e^{\left(\frac{E-E_{F}}{k T}\right)_{+1}}}$
E is the energy of the level above or below fermi level in, E_{F} is the Fermi Energy, k is Boltzmann Constant, T is Absolute Temperature.

2.4.2 Superconductivity

1. The variation of Critical Field with Temperature $H_{c}=H_{0}\left[1-\frac{T^{2}}{T_{c}^{2}}\right]$ tesla, H_{c} is the critical field at a temperature T less than the critical temperature T_{c}, H_{0} is the critical field at 0 K .

2.5 Module -5 : Application of Physics in Computing

2.5.1 Physics of Animation

1. The Odd Rule :When acceleration is constant, one can use the Odd Rule to time the frames. With this method, one calculate the distance the object moves between frames using a simple pattern of odd numbers. Between consecutive frames, the distance the object moves is a multiple of an odd number. For acceleration, the distance between frames increases by multiples of $1,3,5,7, \ldots$
2. The Odd number multiplier for consecutive frames= $(($ frame\# -1$) * 2)-1$
3. Multiplier for distance from first frame to current frame $=($ current frame\# -1$) 2$
4. Base distance $=\frac{\text { Total distance }}{(\text { Last frame number }-1)^{2}}$
5. Jump Magnification $J M=\frac{\text { Jump time }}{\text { Push time }}=\frac{\text { Jump Height }}{\text { Push Height }}=\frac{\text { Push Acceleration }}{\text { Jump Acceleration }}$
6. $J H=\frac{\text { Push Acceleration }}{\text { Gravitational Acceleration }}$

2.5.2 Statistical Physics for Computing

1. Poisson Distribution Probability Mass Function $=f(k ; \lambda)=P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}$
2. The Decay Equation $N=N_{0} e^{-\lambda t}$
λ is decay constant, t is the time, N_{0} is Initial Number of Events, N is number of events after time t.

Chapter 3

Applied Physics for EEE Stream

3.1 Module -1 : Quantum Mechanics

1. The relation between Kinetic Energy and Momentum $E=\frac{p^{2}}{2 m}$, m is the mass of the particle in kg , p is the momentum of the particle in $N s$.
2. Energy of the photon $E=h v=\frac{h c}{\lambda}$,
h is Planck's Constant,
v is the frequency of the radiation in Hz ,
λ is the wavelength of the radiation in m, c is the speed of light.
3. de Broglie Wavelength $\lambda=\frac{h}{p}=\frac{h}{m v}$ in meter
h is Planck's Constant,
m is mass of the particle in kg ,
v is the velocity of the particle $m s^{-1}$.
4. de Broglie Wavelength $\lambda=\frac{h}{\sqrt{2 m E}}$
h is Planck's Constant,
m is mass of the particle in kg ,
E is the Kinetic Energy of the particle in J.
5. de Broglie Wavelength $\lambda=\frac{h}{\sqrt{2 m q V}}$
h is Planck's Constant,
m is the mass of the particle in kg ,
q is the charge on the particle in C,
V is the accelerating potential in V.
6. de Broglie Wavelength $\lambda=\frac{h}{\sqrt{2 m_{e} e V}}=\frac{12.27 \times 10^{-10}}{\sqrt{\bar{V}}} \mathrm{~m}$
h is Planck's Constant,
m_{e} is the mass of the electron in kg ,
e is the charge on the electron in C,
V is the electron accelerating potential in V.
7. Heisenberg's Uncertainty Principle
$\Delta x \Delta p_{x} \geq \frac{h}{4 \pi}$
$\Delta E \Delta T \geq \frac{h}{4 \pi}$
Δx is the uncertainty in the measurement of Position,
ΔP is the uncertainty in the measurement of Momentum,
ΔE is the uncertainty in the measurement of Energy,
ΔT is the uncertainty inn the measurement of transistion time.
8. The uncertainty in the measurment of momentum $\Delta P=m \Delta v$.
Δv is the uncertainty in the measurment of velocity.
9. Eigen Energy Values for a Particle in a one dimensional potential well of infinite depth $E_{n}=\frac{n^{2} h^{2}}{8 m a^{2}}$,
$n=1,2,3 \ldots$ for the Ground, First and Second energy states etc.,
h is Planck's Constant,
m is the mass of the particle in kg ,
a is the width of the potential well in m.

3.2 Module-2 : Electrical Properties of Materials

3.2.1 Electrical conductivity in Solids

1. The free electron mobility $\mu=\frac{v_{d}}{E}=\frac{\sigma}{n e} m^{2} V^{-1} s^{-1}$, v_{d} is the drift velocity of the free elctrons, E the applied electric field strength.
2. The Fermi Factor $f(E)=\frac{1}{e^{\left(\frac{E-E_{F}}{k T}\right)_{+1}}}$
E is the energy of the level above or below fermi level, E_{F} is the Fermi Energy, k is Boltzmann Constant, T is Absolute Temperature.
3. The electrical conductivity of metals as per Quantum Free Electron Theory $\sigma=\frac{1}{\rho}=\frac{n e^{2} \lambda_{F}}{m v_{F}}$ n is number density of free electron (free electron concentration) in m^{-3}
e is electronic charge in C, λ_{F} is fermi level mean free path in m, m is the rest mass of the electron in $k g$, v_{F} is the fermi velocity in ms^{-1}
4. Free electron concentration is given by $n=\frac{N N_{A} D}{A} m^{-3}$
N is the number of free electrons per atom.
N_{A} Avogadro number per kilo mole,
D is the density of material in $k g$,
A is the atomic mass.

3.2.2 Dielectrics

1. The Dipole Moment $\mu=q d x$, q is either of the charge, $d x$ is the separation between the charges.
2. The Electronic Polarizability $\alpha_{e}=\frac{\mu_{e}}{E}$.
E is the applied electric field strength.
3. The polarization $P=N \mu=\frac{q^{\prime}}{A}$,
N is number of dipoles per unit volume,
q^{\dagger} is surface image charge,
A is the surface area.
4. The polarization $\vec{P}=\epsilon_{0}\left(\epsilon_{r}-1\right) \vec{E}$,
ϵ_{0} is Permittivity of Free Space,
ϵ_{r} is Dielectric Constant,
E is the magnitude of Applied Field strength.
5. The internal field $E_{i}=E+\frac{1.2 \mu}{\pi \epsilon_{0} a^{3}}$ in one dimension. a is the interdipole distance in m.
6. The internal field in Three Dimension is $E_{i}=E+\frac{\gamma N \alpha_{e} E}{3 \epsilon_{0}}$ in one dimension. γ is internal field constant.
7. The internal field for elemental solid dielectric is called Lorentz Field $E_{L}=E+\frac{P}{3 \epsilon_{0}}$
8. Clausius-Mossotti relation $\frac{N \alpha_{e}}{3 \epsilon_{0}}=\frac{\epsilon_{r}-1}{\epsilon_{r}+2}$, Applicable only for Elemental Solid Dielectrics.

3.2.3 Superconductivity

1. The variation of Critical Field with Temperature $H_{c}=H_{0}\left[1-\frac{T^{2}}{T_{c}^{2}}\right]$ tesla, H_{c} is the critical field at a temperature T less than the critical temperature T_{c}, H_{0} is the critical field at 0 K .

3.3 Module - 3 : LASER and Optical Fibers

3.3.1 LASER

1. Expression for the number of photons emitted per t seconds $N=\frac{P t \lambda}{h c}$ Photons.
P is LASER Power Output in watt, t is the time in second,
λ is the wavelength of LASER in m,
h is Planck's Constant and
c is the speed of light.
2. The Boltzmann relation $N_{2}=N_{1} e^{-\frac{h c}{\lambda k T}}$
N_{2} is the Number of Atoms in the higher energy state.
N_{1} is the Number of Atoms in the Lower Energy State,
λ is the wavelength of LASER,
' k 'is Boltzmann Constant,
T’ is Absolute Temperature.

3.3.2 Optical Fibers

1. Expression for Numerical Aperture of an Optical Fiber $N A=\sqrt{\frac{n_{1}^{2}-n_{2}^{2}}{n_{0}^{2}}}$
n_{0} is the RI of the surrounding medium,
n_{1} is the RI of the Core,
n_{2} is the RI of Cladding.
2. The Acceptance Angle $\theta=\operatorname{Sin}^{-1}(N A)$
3. The fractional RI change $\Delta=\frac{n_{1}-n_{2}}{n_{1}}$
4. V-Number $V=\frac{2 \pi d}{\lambda} \sqrt{\left(n_{1}^{2}-n_{2}^{2}\right)}$ d is the diameter of the fiber in m, λ is the wavelength of light in m
5. The number of modes $N=\frac{V^{2}}{2}$
6. Attenuation Co-efficient $\alpha=\frac{-10}{L} \log _{10}\left(\frac{P_{o}}{P_{i}}\right) d B / \mathrm{km}$
L is the length of the fiber in km .
P_{o} is the Power Output of the fiber in W
P_{i} is the Power input of the fiber in W.
$d B$ is the unit in decibel.

3.4 Module - 4 : Maxwell's Equations and EM Waves

3.4.1 Vector Calculus

1. The ∇ operator is given by $\left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial} \hat{z}\right)$ and a vector field \vec{E} is given by $\left(E_{x} \hat{x}+E_{y} \hat{y}+\right.$ $E_{z} \hat{z}$)
Then the Divergence of a vector field \vec{E} is given by
$\nabla \cdot \vec{E}=\left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial} \hat{y}+\frac{\partial}{\partial} \hat{z}\right) \cdot\left(E_{x} \hat{x}+E_{y} \hat{y}+E_{z} \hat{z}\right)=\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}$
Divergence of a vector field signifies whether the point in a vector field is a source or a sink. If the divergence is zero then the vector field is Solenoidal.
2. ∇ operator is given by $\left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial} \hat{z}\right)$ and a vector field \vec{E} is given by $\left(E_{x} \hat{x}+E_{y} \hat{y}+E_{z} \hat{z}\right)$ Then the curl of a vector field \vec{E} is given by $\nabla \times \vec{E}=\left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial} \hat{y}+\frac{\partial}{\partial} \hat{z}\right) \times\left(E_{x} \hat{x}+E_{y} \hat{y}+E_{z} \hat{z}\right)=\left|\begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ E_{x} & E_{y} & E_{z}\end{array}\right|$ The Curl of a vector field signifies how much the vector field rotates at a given point. If the Curl of a vector field is zero then the vector field is called Irrotational.

3.5 Module - 5 : Semiconductors and Devices

3.5.1 Electrical Conductivity in Semiconductors

1. The electrical conductivity of a semiconductor is $\sigma_{i}=\frac{1}{\rho_{i}}=n_{i} e\left(\mu_{e}+\mu_{h}\right)$ $n i$ is the intrinsic carrier concentration in m^{-3},
e is electronic charge in C,
μ_{e} and μ_{h} are electron and hole mobilities in $m^{2} V^{-1} s^{-1}$.
2. Relation between fermi energy E_{F} and energy gap E_{g} is given by $E_{f}=\frac{E_{g}}{2}$
3. Law of mass action $n_{i}^{2}=N_{e} N_{h}$
N_{e} and N_{h} are electron and hole concentrations respectively.

3.5.2 Hall Effect

1. The Hall Coefficient $R_{H}=\frac{1}{\rho n_{e}}$
n_{e} is the free electron concentration.
R_{H} is positive for holes and negative for electrons.
2. Hall field $E_{H}=R_{H} B J$
B is the applied magnetic flux density,
J is the current density.
3. Hall Voltage $V_{H}=R_{H} B J d$
B is the applied magnetic flux density,
J is the current density,
d is the thickness of the material.

Chapter 4

Applied Physics for CV Stream

4.1 Module-1 : Oscillations and Shock waves

4.1.1 Oscillations

1. The angular velocity or angular frequency $\omega=2 \pi \nu=\frac{2 \pi}{T}=\sqrt{\frac{k}{m}}$ v is the frequency of Oscillations in Hz ,
T is the Time Period of oscillations in s,
k is the force constant/stiffness factor in $N s^{-1}$,
m is the mass of the body in $k g$.
2. Effective spring constant k_{s} for n springs in series $\frac{1}{k_{S}}=\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{k_{3}}+\ldots \frac{1}{k_{3}}$ $k_{1}, k_{2}, k_{3} \ldots$ are the spring constants of individual springs in Nm^{-1}. for n identical springs $k_{s}=\frac{k}{n}$
k is the stiffness factor of each spring in Nm^{-1}..
3. Effective spring constant k_{p} for n springs in parallel $k_{p}=k_{1}+k_{2}+k_{3}+\ldots k_{n}$
$k_{1}, k_{2}, k_{3} \ldots$ are the spring constants of individual springs in Nm^{-1}.
for n identical springs $k_{p}=n k$
k is the stiffness factor of each spring in Nm^{-1}..
4. The amplitude of damped oscillations $A_{d}=A e^{\frac{-b}{2 m} t}$ in m.
b is damping constant,
t is the time.
5. Amplitude in forced oscillations (As per the book Vibrations and Waves by A P French)
$A=\frac{\frac{f_{0}}{m}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(\gamma \omega)^{2}}}$
$\frac{f_{0}}{m}$ is the amplitude of the applied periodic force per unit mass.
γ is damping ration.
ω_{0} is the natural angular frequency of the system.
ω is the angular frequency of the applied periodic force.
or $A=\frac{\frac{f_{0}}{m}}{\sqrt{\left(\omega^{2}-p^{2}\right)^{2}+4 b^{2} p^{2}}}$
$b=\frac{r}{2 m}, p$ is the frequency of the applied periodic force.

4.1.2 Shock Waves

1. Mach Number $M=\frac{v_{0}}{v_{s}}$
v_{0} is the velocity of the object or flow in a medium.
v_{s} is the velocity of sound in the same medium.
2. Mach Angle $\theta_{M}=\operatorname{Sin}^{-1}\left(\frac{1}{M}\right)$

4.2 Module-2 : Elasticity

1. The Young's Modulus of the material of a wire of circular cross section loaded at one and fixed at the other $Y=\frac{F L}{\pi r^{2} l} \quad \mathrm{Nm}^{-2}$ orPa
F is the applied force in N,
L is the original length of the wire in m, r is the radius of the wire in m,
l is the extension in the wire in m.
2. The bulk modulus of the material is given by $K=\frac{P V}{\Delta V} \mathrm{Nm}^{-2} \operatorname{orPa}$
P is the univorm pressure in $P a$, V is the original volum in m^{-3}, ΔV is he change in volume in m^{-3}
3. The Rigidity Modulus of the material of a wire of circular cross section loaded at one and fixed at the other $\eta=\frac{F L}{A x} \quad \mathrm{Nm}^{-2}$ or Pa F is the applied force tagnentially to the top surface N, L length of the edege of the cube m, A is the surface area of te top surface m^{2}, x is the shearing distance m.
4. The Bending moment of a beam is given by $M=\frac{Y}{R} I_{g} \quad N m$ Y is the Young's Modulus of the material of the beam in $P a$, R is the radius of curvature of the beam in m^{2}, I_{g} is the geometrical moment inertia of the beam in kgm^{2}.

4.3 Module-3 : Acoustics, Radiometry \& Photometry

4.3.1 Acoustics

1. The absorption coefficient of a material surface $\alpha=\frac{\text { Sound Energy Absorbed }}{\text { Total Sound Energy Incident }}$
2. The total absorption co-efficient of all the materials in a hall is $A=\sum_{1}^{n} \alpha_{n} S_{n}$. $\alpha_{1}, \alpha_{2} \ldots$ are the absorption coefficients of the surfaces with areas $S_{1}, S_{2} \ldots$
3. Sabine's Formula for Reverberation time is $T=\frac{0.161 V}{A}$ V is the volume of the Hall.

4.4 Module -2 : LASER and Optical Fibers

4.4.1 LASER

1. Expression for the number of photons emitted per t seconds $N=\frac{P t \lambda}{h c}$ Photons.
P is LASER Power Output in watt, t is the time in second,
λ is the wavelength of LASER in m,
h is Planck's Constant and c is the speed of light.
2. The Boltzmann relation $N_{2}=N_{1} e^{-\frac{h c}{\lambda k T}}$
N_{2} is the Number of Atoms in the higher energy state.
N_{1} is the Number of Atoms in the Lower Energy State,
λ is the wavelength of LASER,
' k 'is Boltzmann Constant,
T' is Absolute Temperature.

4.4.2 Optical Fibers

1. Expression for Numerical Aperture of an Optical Fiber $N A=\sqrt{\frac{n_{1}^{2}-n_{2}^{2}}{n_{0}^{2}}}$ n_{0} is the RI of the surrounding medium,
n_{1} is the RI of the Core,
n_{2} is the RI of Cladding.
2. The Acceptance Angle $\theta=\operatorname{Sin}^{-1}(N A)$
3. Attenuation Co-efficient $\alpha=\frac{-10}{L} \log _{10}\left(\frac{P_{o}}{P_{i}}\right) d B$
L is the length of the fiber in km.
P_{o} is the Power Output of the fiber.
P_{i} is the Power input of the fiber.
$d B$ is the unit in decibel.

4.5 Module-5 : Natural Hazards and Safety

1. Energy released during earthquake $\log E=5.24+1.44 M_{w}$, M_{w} is the magnitude of the earthquake.
2. Magnitude of the earthquake $M_{w}=\frac{2}{3} \log M_{0}-10.7$ M_{0} is the Seismic moment of the earthquake.
3. Magnitude of the earthquake interms of intensities $M=\log \left(\frac{I}{I_{0}}\right), I$ is the intensity of earthquake and I_{0} is the base intesity.
4. Ratio of intensities of two earthquakes $\log \left(\frac{I_{1}}{I_{2}}\right)=10^{M_{1}-M_{2}}$ I_{1} and I_{2} are the intensities of two different earthquakes, M_{1} and M_{2} are the respective magnitudes.

In all the above equations \log is $\log _{10}$

Chapter 5

Applied Physics for ME Stream

5.1 Module-1 : Oscillations and Shock waves

5.1.1 Oscillations

1. The angular velocity or angular frequency $\omega=2 \pi v=\frac{2 \pi}{T}=\sqrt{\frac{k}{m}}$ v is the frequency of Oscillations in Hz ,
T is the Time Period of oscillations in s,
k is the force constant/stiffness factor in $N s^{-1}$,
m is the mass of the body in $k g$.
2. Effective spring constant k_{s} for n springs in series $\frac{1}{k_{S}}=\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{k_{3}}+\ldots \frac{1}{k_{3}}$ $k_{1}, k_{2}, k_{3} \ldots$ are the spring constants of individual springs in Nm^{-1}. for n identical springs $k_{s}=\frac{k}{n}$
k is the stiffness factor of each spring in Nm^{-1}..
3. Effective spring constant k_{p} for n springs in parallel $k_{p}=k_{1}+k_{2}+k_{3}+\ldots k_{n}$
$k_{1}, k_{2}, k_{3} \ldots$ are the spring constants of individual springs in Nm^{-1}.
for n identical springs $k_{p}=n k$
k is the stiffness factor of each spring in Nm^{-1}..
4. The amplitude of damped oscillations $A_{d}=A e^{\frac{-b}{2 m} t}$ in m.
b is damping constant,
t is the time.
5. Amplitude in forced oscillations (As per the book Vibrations and Waves by A P French)
$A=\frac{\frac{f_{0}}{m}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(\gamma \omega)^{2}}}$
$\frac{f_{0}}{m}$ is the amplitude of the applied periodic force per unit mass.
γ is damping ratio given by $\frac{b}{m}$.
ω_{0} is the natural angular frequency of the system.
ω is the angular frequency of the applied periodic force.
or $A=\frac{\frac{f_{0}}{m}}{\sqrt{\left(\omega^{2}-p^{2}\right)^{2}+4 b^{2} p^{2}}}$
$b=\frac{r}{2 m}, p$ is the frequency of the applied periodic force.

5.1.2 Shock Waves

1. Mach Number $M=\frac{v_{0}}{v_{s}}$
v_{0} is the velocity of the object or flow in a medium.
v_{s} is the velocity of sound in the same medium.
2. Mach Angle $\theta_{M}=\operatorname{Sin}^{-1}\left(\frac{1}{M}\right)$

5.2 Module-2 : Elasticity

1. The Young's Modulus of the material of a wire of circular cross section loaded at one and fixed at the other $Y=\frac{F L}{\pi r^{2} l} \quad \mathrm{Nm}^{-2} \operatorname{orPa}$
F is the applied force in N,
L is the original length of the wire in m, r is the radius of the wire in m,
l is the extension in the wire in m.
2. The bulk modulus of the material is given by $K=\frac{P V}{\Delta V} \mathrm{Nm}^{-2} \operatorname{orPa}$
P is the univorm pressure in $P a$, V is the original volum in m^{-3}, ΔV is he change in volume in m^{-3}
3. The Rigidity Modulus of the material of a wire of circular cross section loaded at one and fixed at the other $\eta=\frac{F L}{A x} \quad \mathrm{Nm}^{-2}$ or Pa F is the applied force tagnentially to the top surface N, L length of the edege of the cube m, A is the surface area of te top surface m^{2}, x is the shearing distance m.
4. The Bending moment of a beam is given by $M=\frac{Y}{R} I_{g} \quad N m$ Y is the Young's Modulus of the material of the beam in $P a$, R is the radius of curvature of the beam in m^{2}, I_{g} is the geometrical moment inertia of the beam in kgm^{2}.

5.3 Module-3 : Thermoelectric Materials

5.3.1 Thermoelectricity

1. Seebeck effect, The voltage generated at the junction is $V=\alpha\left(T_{2}-T_{1}\right)$
$\alpha=\alpha_{A}+\alpha_{B}$ are the seebeck coefficients of metals A annd B.
T_{1} and T_{2} are the temperatures at the two junctions.
2. The $\alpha=\frac{\Delta V}{\Delta T}=\frac{E}{\Delta T}$
E is the electric field in Vm^{-1}
ΔT is the temperature gradient.
3. the peltiere coefficient $\pi_{a b}=\frac{H}{I t}$,
I is the junction current,
H is the heat absorbed in t seconds.
4. The variation of thermo emf with temperature is $e=a t+\frac{1}{2} b t^{2}$.
a and b are Seebeck constants and $t=T_{2}-T_{1}$,
T_{2} is the hot end emperature in K and T_{1} is the cold end temperature in K.
5. Figure of Merit $Z=\frac{\alpha^{2} \sigma}{K}$.
α is the seebeck coefficient of the material in microvolt/K,
σ is electricla conductivity,
K is Total thermal conductivity.
6. The Theromo EMF e in terms of temperatures T_{1} and T_{2} is given by $e=\frac{\pi_{1}}{T_{1}}\left(T_{2}-T_{1}\right)$. π_{1} is peltier coefficient.

5.4 Module-4 : Cryogenics

1. Joule Thomson Effect $\left(\frac{\delta T}{\delta P}\right)_{H}=\frac{1}{C_{p}}\left(\frac{2 a}{R T}-b\right)$
a and b are Van der wall's constant,
R is universal gas constant $=8.314$ Joule $/ \mathrm{mole} / \mathrm{K}$.
2. Inversion Temperature $T_{i}=\frac{2 a}{b R}$
a and b are Van der wall's constant,
R is universl gas constant $=8.314$ Joule $/ \mathrm{mole} / \mathrm{K}$

5.5 Module-5 : Materials and Characterization Techniques

1. Braggs' Lawnd $=2 d \sin (\theta)$
n is the order of diffraction and can take values $1,2,3 \ldots$,
λ is the wavelength of X-rays,
d is the interplanar spacing, and
θ is the glancing angle corrsponding to the order of diffraction n.
2. Schrrer's Equation $B(2 \theta)=\frac{k \lambda}{L \cos \theta}$
$B(2 \theta)$ is the full width at half maximum,
λ is the wavelength of X-rays, L is the crystallite size,
k is scherrer constant with the most common value 0.94 , θ is the glancing angle.
