BLOW UP SYLLABUS
 First Semester B.E.
 Mathematics-I for Mechanical Engineering Stream(22MATM11)

(Effective from the academic year 2022-23)

| Topics | Topics To Be Covered | Hours |
| :--- | :--- | :--- | :--- |
| Module-I: Calculus | | |
| Polar coordinates, Polar curves - angle between
 the radius vector and the tangent, angle between
 twocurves, pedal equations. | Discussion restricted to derivation and problems as
 suggested in articles no.4.7(1, 2) and 4.8 (for Polar
 Curves only) of Textbook 1. | 2L |

Self-Study: Euler's Theorem, Method of Lagrange's undetermined multipliers with single constraint.	Article No. 5.4 and 5.12 of Textbook 1 1. No Question is to be set for SEE. 2. $\mathbf{2 0 \%}$ weightage shall be given to CIE from self-study topics	
(RBT Levels: L1, L2 \& L3)	Total	8
Module-III: Ordinary Differential Equations of First Order		
Linear and Bernoulli's differential equations, Exact and reducible to exact differential equationsIntegrating factors on $\frac{1}{M}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \& \frac{1}{N}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)$. Orthogonal trajectories, Newton's law of cooling.	(i) Discussion and problems restricted to article no.11.9 (only for introduction No questions to be set for SEE) and 11.10 of Textbook 1. (ii) In the case of reducible to exact equations, I.F. is restricted to $\frac{1}{M}\left(\frac{\partial M}{\partial Y}-\frac{\partial N}{\partial X}\right) \& \frac{1}{N}\left(\frac{\partial N}{\partial X}-\frac{\partial M}{\partial Y}\right)$ only. article no.11.11, 11.12(4) of Text Book 1. (iii) Application-oriented problems are restricted to articles no. $12.3(1,2 \& 3) \& 12.6$ of Textbook 1.	3L
Nonlinear differential equations: Introduction to general and singular solutions, Solvable for p only, Clairaut's equations, reducible to Clairaut's equations. Problems.	Discussion and problems restricted to article no. 11.13(case I only) and 11.14 of Textbook 1.	1L
Tutorials	i) Involvement of faculty and students in identifying the problems \& solutions. ii) PPT presentations by the faculty about the applications of the module - Rate of Growth or Decay, Conduction of heat. iii) Guidance to the students for self-study topics through illustrative examples.	4 T
Self-study: Application of ODE to L-R circuits. Solution of nonlinear ODEs-Solvable for x and y.	Article no. 11.13 (Case II and Case III), 12.5 of Textbook 1. 1. No Question is to be set for SEE 2. 20% weightage shall be given to CIE from self-study topics	
(RBT Levels: L1, L2 \& L3)	Total	8
Module-IV: Ordinary Differential Equations of Higher-order		
Higher-order linear ODEs with constant coefficients. Inverse differential operator.	Discussion of problems in article no. 13.4, 13.5, 13.6 and 13.7 of Textbook 1. (P.I restricted to $R(x)=e^{a x}, \operatorname{sinax}, \cos a x, x^{n}$ for $f(D) y=R(x))$	2L
Method of variation of parameters, Cauchy's and Legendre's differential equations.	Discussion of problems in article no.13.8(1) of Textbook 1. Discussion of problems in article no.13.9 of Textbook 1. (P.I. restricted to $R(x)=e^{a x}, \sin a x, \cos$ ax, $x^{n} \& \log x$ in $f(D) y=R(x)$ for Cauchy's and Legendre's equations)	2L

Tutorials	i) Involvement of faculty and students in identifying the problems \& solutions. ii) PPT presentations by the faculty about the applications of the module-Rate of Growth or Decay, Conduction of heat. iii) Guidance to the students for self-study topics through illustrative examples.	4T
Self-study: Finding the solution by the method of undetermined coefficients. Formulation and solutions of oscillation of a spring.	Article no. 13.8(2) and 14.4 of Textbook 1 1. No Question is to be set for SEE. 2. $\mathbf{2 0 \%}$ weightage shall be given to CIE from self-study topics	
(RBT Levels: L1, L2 \& L3)	Total	8
Module-V: Linear Algebra		
Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution ofa system of linear equations. Gauss elimination method, Gauss-Jordan method and approximate solution by the Gauss-Seidel method.	Discussion and problems as suggested in article no. 2.7, 2.10, 28.6(1,2) and 28.7(2) of Textbook 1.	3L
Eigen values and Eigenvectors - Rayleigh's power method to find the dominant eigenvalue and eigenvector.	Discussion and problems as suggested in article no. 4.0, 8.1 and 20.8 of Textbook 2	1L
Tutorials	i) Involvement of faculty and students in identifying the problems \& solutions. ii) PPT presentations by the faculty about the applications of the module-Network Analysis, Balancing equations. iii) Guidance to the students for self-study topics through illustrative examples.	4T
Self-study: Solution of a system of linear equations by Gauss-Jacobi method, Inverse of a square matrix by Cayley-Hamilton theorem.	Article no. 28.7(1), 2.15 of Textbook 1. 1. No Question is to be set for SEE. 2. 20% weightage shall be given to CIE from self-study topics	
(RBT Levels: L1, L2 \& L3)	Total	8

Text Books: -

1. B. S. Grewal: "Higher Engineering Mathematics", Khanna Publishers, $44^{\text {th }}$ Ed., 2021.
2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley \& Sons, $10^{\text {th }}$ Ed., 2018.

Reference Books:-

1. B.V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11 ${ }^{\text {th }}$ Ed., 2017
2. Srimanta Pal \& Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, $3{ }^{\text {rd }}$ Ed., 2016.
3. N.P Bali and Manish Goyal: "A Textbook of Engineering Mathematics" Laxmi Publications, $10^{\text {th }}$ Ed., 2022.
4. C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw - Hill Book Co., New York, $6^{\text {th }}$ Ed., 2017.
5. Gupta C.B, Sing S.R and Mukesh Kumar: "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education(India) Pvt. Ltd 2015.
6. H. K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics" S. Chand Publication, $3^{\text {rd }}$ Ed., 2014.
7. James Stewart: "Calculus" Cengage Publications, $7^{\text {th }}$ Ed., 2019.
8. David C Lay: "Linear Algebra and its Applications", Pearson Publishers, $4^{\text {th }}$ Ed., 2018.
9. Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., $6^{\text {th }}$ Ed., 2017.
10. Gilbert Strang: "Linear Algebra and its Applications", Cengage Publications, $4^{\text {th }}$ Ed., 2022.

Web links and Video Lectures:

1. http://nptel.ac.in/courses.php?disciplineID=111
2. http://www.class-central.com/subject/math(MOOCs)
3. http://academicearth.org/
4. VTU EDUSAT PROGRAMME - 20
