VISVESVARAYA TECHNOLOGICAL

UNIVERSITY, BELAGAVI

Hand Book of formulas for 1st Year EEE

Dr. B. V. Madiggond PROFESSOR & HOD (EEE) DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING HIRASUGAR INSTITUTE OF TECHNLOGY, NIDASOSHI, KARNATAKA

Dr. Sumathi S.

PROFESSOR & HOD (EEE) DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING RNS INSTITUTE OF TECHNOLOGY, BENGALURU

Electromagnetism
Magnetic Flux Density $B = \frac{\phi}{a} Wb/m^2$ or T
where $B = Magnetic Flux Density$
$\phi =$ Magnetic Flux
a = area of cross section
MMF = N I
where $N = $ Number of turns in the coil
I = Current through the coil MME = Elux x Baluatanea = $\phi x B$
$MMF = Flux x Reluctance = \phi x R$
Reluctance R= $\frac{l}{\mu 0 \ \mu r \ a}$
where μ_0 = Permeability of free space or air (4 π x 10 ⁻⁷ H/m)
μ_r = Relative Permeability
a = area of cross section
Magnetic Force H = $\frac{NI}{l}$ AT /m
where $N = Number of turns in the coil$
I = Current
<i>l</i> =Coil length
EMF induced in the coil $e = -N \frac{d\phi}{dt}$
where e= induced emf in volts,
N= Number of turns in the coil
$\frac{d\phi}{dt}$ = rate of change of flux
Statically induced emf e= -L $\frac{di}{dt}$
Where, $L =$ self-inductance of the coil
$\frac{di}{dt}$ = rate of change of current
Dynamically induced emf e=B $l v \sin \theta$
where $B = flux$ density
l = length v = conductor velocity
•
Self Inductance L= $\frac{N\phi}{l} = \frac{\mu 0 \ \mu r \ a \ N^2}{l}$
Where $N = Number of turns in the coil$
I = Current
$\phi = \text{Magnetic Flux}$ $\mu_0 = \text{Permeability of free space or air } (4\pi \times 10^{-7} \text{ H/m})$
μ_r = Relative Permeability
a = area of cross section of the electromagnet
l = length of the electromagnet

Module-2 (A.C. Fundamentals & Single Phase AC Circuits)					
Instantaneous value of alternating voltage $v = V_m \sin \omega t$					
Instantaneous value of alternating current $i = I_m \sin \omega t$					
Angular frequency $\omega = 2\pi f$, f -frequency in Hz					
RMS value of voltage $V_{rms} = \frac{V_m}{\sqrt{2}}$, V_m -Peak voltage					
RMS value of current, $I_{rms} = \frac{I_m}{\sqrt{2}}$, I_m - Peak current					
Average voltage $V_{av} = \frac{2V_m}{\pi}$					
Average current $I_{av} = \frac{2I_m}{\pi}$					
$Form \ factor = \frac{rms \ value}{average \ value} = \frac{0.707 \ I_m}{0.637 \ I_m} = 1.11$					
$Peak \ factor = \frac{Maximum \ value}{rms \ value}$					

Hand Book of formulas for 1st Year EEE

3. Power in a three phase AC circuit: 1. $P_{Ph} = V_{Ph}I_{Ph} \cos \emptyset$ Watts 2. $Q_{Ph} = V_{Ph}I_{Ph} \sin \emptyset$ VAR 3. $S_{Ph} = V_{Ph}I_{Ph}$ VA 4. $P = \sqrt{3}V_{L}I_{L} \cos \emptyset$ Watts 5. $Q = \sqrt{3}V_{L}I_{L} \sin \emptyset$ VAR 6. $S = \sqrt{3}V_{L}I_{L}$ VA

Hand Book of formulas for 1st Year EEE

Module 3 (DC Generator)

EMF Equation:

$$E_g = \frac{\phi ZNP}{60A} \ volts$$

 E_g = generated emf in *volts*

 \boldsymbol{P} = number of poles

 \emptyset = flux per pole in *wb*

 \mathbf{Z} = number of slots× number of conductors per slot

N = speed of the armature in rpm

A = number of parallel paths

A = P for lap winding; A = 2 for wave winding

Nomenclature Used:

 E_q = generated emf in *volts*

V = terminal voltage in *volts*

 R_a =armature resistance in *ohms*

R_{se}=series field winding resistance in ohms

 R_{sh} =shunt field winding resistance in *ohms*

*I*_a=armature current in *amperes*

*I*_{se}=series field current in *amperes*

Ish = shunt field current in amperes

 I_L = load current in *amperes*

 R_L = load resistance in *ohms*

BCD=Brush Contact Drop

Types of DC Generators: 1. DC SERIES GENERATOR

Module 3 (DC Motor)									
Nomer	nclature Used:								
		[
V	= DC input voltage in volts	I _{se}	= Series Field Current in amps						
I	= Line Current in amps	I _{sh}	= Shunt Field Current in amps						
P	= Number of poles	Ia	= Armature Current in amps						
N	= Speed in rpm	BCD	= Brush Contact Drop in volts						
Φ	= Flux in wb	R _a	= Armature Resistance in ohm						
T _{sh}	= Shaft Torque in N-m	R _{sh}	= Shunt field Resistance in ohm						
Ta	= Armature Torque in N-m	R _{se}	= Series field Resistance in ohm						
E _b	= Back EMF in volts	Ia	= Armature current in Amps						
Α	= Number of parallel paths								
ω	= Angular Velocity in radians per second								
-									
Back EMF $E_{b} = \frac{\emptyset \times Z \times N \times P}{60 \times A} \text{ volts}$									
Arm	ature Torque								
$\mathbf{T}_{\mathbf{a}} = \frac{\phi \times \mathbf{Z} \times \mathbf{I}_{\mathbf{a}} \times \mathbf{P}}{2 \times \pi \times \mathbf{A}} \mathbf{N} \cdot \mathbf{m}$									
Angu	ılar velocity								
$\omega = \frac{2 \times \pi \times N}{60}$ radians/second									
Shaft Torque									
$T_{sh} = \frac{\text{Output of motor in HP} \times 746}{\omega} \text{ N-m}$									

Module 4 (Transformers)

Nomenclature	:

 E_1 = emf induced in primary winding in volts

 E_2 = emf induced in secondary winding in volts

f = Frequency of supply voltage in Hertz

 N_1 = number of primary windings

 N_2 = number of secondary windings

 ϕ_m = Maximum flux linking the windings in webers

 V_1 = supply voltage given to the primary windings in volts

 V_2 = output voltage across secondary windings in volts

 I_1 = current flowing through primary windings

 I_2 = current flowing through secondary windings

 $W_i = \text{Iron loss}$

 W_{cu} = Full load Copper loss

x = fractional load

V= volume of the core

 B_{max} = maximum value of flux density in the core

 η = a constant, whose value depends on the quality of the magnetic material used for making the core

 β = a constant, whose value depends on the quality of the magnetic material used for making the core

t = thickness of the laminations

Emf equation:

 $E_1 = 4.44 f \phi_m N_1$ Volts

 $E_2 = 4.44 f \varphi_m N_2$ Volts

Transformation ratio:

$$\mathbf{K} = \frac{\mathbf{N}_2}{\mathbf{N}_1} = \frac{\mathbf{V}_2}{\mathbf{V}_1} = \frac{\mathbf{I}_1}{\mathbf{I}_2}$$

Condition for maximum efficiency:

 $W_i = W_{cu}$

Full load currents:

 $I_1 = \frac{\text{Volt Ampere Rating of a transformer}}{V_1}$ Amps

 $I_2 = \frac{\text{Volt Ampere Rating of a transformer}}{V_2} \text{Amps}$

Efficiency of a transformer:

$$\label{eq:eq:eq:entropy} \%\eta = \frac{x \times \text{KVA} \times 1000 \times \text{Cos} \emptyset}{x \times \text{KVA} \times 1000 \times \text{Cos} \emptyset + W_i + x^2 W_{\text{cu}(\text{FL})}} \times 100$$

Hysteresis loss in transformer:

 $W_{h} = \eta \ B^{1.6}_{max} \ f \ V \ Watt$

Eddy current loss in transformer:

 $W_e = \beta B_{max} f^2 t^2 V Watt$

Module 4 (Three-phase induction Motors)				
Synchronous speed of rotating magnetic field $Ns = \frac{120 f}{P}$				
Where $f =$ frequency in Hz, P= Number of poles				
Percentage slip $s = \frac{Ns - N}{Ns}$				
Where $N =$ rotor speed, $N_S =$ Synchronous speed				
f'=sf				
Where f ' frequency of rotor induced emf in Hz				
Rotor speed $N = N_s(1-s)$				

Truth Table

Sl. No.	Switch S1	Intermediate Switch S3	Position of S3	Switch S2	Lamp
1	$A_1 - B_1$	P – S & Q – R		$A_2 - B_2$	OFF
2	$A_1 - B_1$	P – S & Q – R	Cross	$A_2 - C_2$	ON
3	$A_1 - C_1$	P – S & Q – R	Connection	$A_2 - B_2$	ON
4	$A_1 - C_1$	P – S & Q – R		$A_2 - C_2$	OFF
5	$A_1 - B_1$	P – Q & R – S		$A_2 - B_2$	ON
6	$A_1 - B_1$	P – Q & R – S	Straight	$A_2 - C_2$	OFF
7	$A_1 - C_1$	P – Q & R – S	Connection	$A_2 - B_2$	OFF
8	$A_1 - C_1$	P – Q & R – S		$A_2 - C_2$	ON

Two-Part Electricity TariffTotal charges = Rs (b x kW + c x kWh)= Fixed charges + Running chargesWhere b= charge per kW of maximum demandc= charge per kWh of energy consumed