VISVESVARAYA TECHNOLOGICAL

UNIVERSITY, BELAGAVI

Hand Book of formulas for 1 ${ }^{\text {st }}$ Year EEE

Dr. B. V. Madiggond
PROFESSOR \& HOD (ELE)
DEPARTMENT OF ELECTRICAL \& ELECTRONICS ENGINEERING HIRASUGAR INSTITUTE OF TECHNLOGY, NIDASOSHI, KARNATAKA

Dr. Sumathi S.

PROFESSOR \& HOD (EEE)
DEPARTMENT OF ELECTRICAL \& ELECTRONICS ENGINEERING RNS INSTITUTE OF TECHNOLOGY, BENGALURU

Module-1 (DC-Circuits)

Ohm's Law
Statement: The voltage across a conductor is directly proportional to the current flowing through it, provided all physical conditions and temperature, remain constant.
$\mathrm{V}=\mathrm{I} \times \mathrm{R}$ volt
$\mathrm{I}=\mathrm{V} / \mathrm{R}$ ampere
$\mathrm{R}=\mathrm{V} / \mathrm{I}$ ohm

$\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$ volt
Resistors in series:
$\mathrm{V}=\left(\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}\right)$ volt
$\mathrm{R}_{\mathrm{eq}}=\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right)$ ohm
$\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}_{\text {eq }}}$ ampere

Voltage division in series circuit:
$\mathrm{V}_{1}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{~V}$ volt
$\mathrm{V}_{2}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{~V}$

Resistors in parallel
$\frac{1}{\mathrm{R}_{\mathrm{eq}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}$
$\mathrm{I}=\left(\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}\right)$ ampere
$\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{eq}}}$ ampere

Power dissipated in the circuit

$\mathrm{P}=(\mathrm{V}$ I $)$ watt or $\mathrm{P}=\left(\mathrm{I}^{2} \mathrm{R}\right)$ watt or $\left(\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}\right)$ watt

Energy

Energy $=($ Power \times Time $)$ joule or Energy $=(($ Voltage \times Current \times Time $)$ joule

Electromagnetism

Magnetic Flux Density $\mathrm{B}=\frac{\phi}{a} \mathrm{~Wb} / \mathrm{m}^{2}$ or T
where $B=$ Magnetic Flux Density
$\phi=$ Magnetic Flux
$\mathrm{a}=$ area of cross section
$\mathrm{MMF}=\mathrm{N}$ I
where $\mathrm{N}=$ Number of turns in the coil
I= Current through the coil
MMF $=$ Flux \times Reluctance $=\phi \times R$
Reluctance $\mathrm{R}=\frac{l}{\mu 0 \mu r a}$
where $\mu_{0}=$ Permeability of free space or air $\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)$
$\mu_{\mathrm{r}}=$ Relative Permeability
$\mathrm{a}=$ area of cross section
Magnetic Force $\mathrm{H}=\frac{N I}{l} \mathrm{AT} / \mathrm{m}$
where $\mathrm{N}=$ Number of turns in the coil
I = Current
$l=$ Coil length
EMF induced in the coil $\mathrm{e}=-\mathrm{N} \frac{d \phi}{d t}$
where e= induced emf in volts,
$\mathrm{N}=$ Number of turns in the coil
$\frac{d \phi}{d t}=$ rate of change of flux
Statically induced emf e $=-\mathrm{L} \frac{d i}{d t}$
Where, $\mathrm{L}=$ self-inductance of the coil
$\frac{d i}{d t}=$ rate of change of current
Dynamically induced emf $\mathrm{e}=\mathrm{B} l v \sin \theta$
where $\mathrm{B}=$ flux density
$l=$ length
$v=$ conductor velocity
Self Inductance $\mathrm{L}=\frac{\mathrm{N} \phi}{I}=\frac{\mu 0 \mu r a N^{2}}{l}$
Where $\mathrm{N}=$ Number of turns in the coil
I = Current
$\phi=$ Magnetic Flux
$\mu_{0}=$ Permeability of free space or air $\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)$
$\mu_{\mathrm{r}}=$ Relative Permeability

$\mathrm{a}=$ area of cross section of the electromagnet
$l=$ length of the electromagnet

Mutual Inductance $\mathrm{M}=\frac{\mu_{0} \mu_{r} N_{1} N_{2} a}{l}$
where $\mu_{0}=$ Permeability of free space or air $\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)$
$\mu_{\mathrm{r}}=$ Relative Permeability
$\mathrm{N}_{1}=$ number of turns in coil 1
$\mathrm{N}_{2}=$ number of turns in coil 2
$\mathrm{a}=$ cross-sectional area

$l=$ coil length
Co-efficient of Coupling $\mathrm{K}=\frac{M}{\sqrt{L_{1} L_{2}}}$
where $\mathrm{M}=$ Mutual Inductance
$\mathrm{L}_{1}=$ Self inductance of coil 1
$\mathrm{L}_{2}=$ Self inductance of coil 2
Energy stored in Magnetic field $=\frac{1}{2} \mathrm{LI}^{2}$
where $\mathrm{L}=$ Self Inductance of a coil
$\mathrm{I}=$ Current flowing through the coil

Module-2 (A.C. Fundamentals \& Single Phase AC Circuits)

Instantaneous value of alternating voltage $v=V_{m} \sin \omega t$
Instantaneous value of alternating current $i=I_{m} \sin \omega t$
Angular frequency $\omega=2 \pi f, f$-frequency in Hz
RMS value of voltage $V_{r m s}=\frac{V_{m}}{\sqrt{2}}, \quad V_{m}$ - Peak voltage
RMS value of current, $I_{r m s}=\frac{I_{m}}{\sqrt{2}}, \quad I_{m}$ - Peak current
Average voltage $V_{a v}=\frac{2 V_{m}}{\pi}$
Average current $I_{a v}=\frac{2 I_{m}}{\pi}$
Form factor $=\frac{\text { rms value }}{\text { average value }}=\frac{0.707 I_{m}}{0.637 I_{m}}=1.11$
Peak factor $=\frac{\text { Maximum value }}{r m s \text { value }}$

Pure Resistive Circuit	
	$\begin{aligned} & v=V_{m} \sin \omega t=V \angle 0 \\ & i=I_{m} \sin \omega t=I \angle 0 \\ & Z=R=\frac{V}{I} \\ & \operatorname{Cos} \phi=1 \end{aligned}$
	Average Power $P=V I$ in Watts

Hand Book of formulas for 1st Year EEE

Purely Inductive circuit	
\cdots	$\begin{aligned} & v=V_{m} \sin \omega t=V \angle 0 \\ & i=I_{m} \sin \left(\omega t-90^{0}\right)=I \angle-90^{0} \\ & \quad Z=R+j X_{c}=\frac{V \angle 0}{I \angle-\phi} \\ & P_{a v}=0 \end{aligned}$

Single Phase Circuits

Series RL circuit:

$$
v=V_{m} \sin \omega t=V \angle 0
$$

$$
i=I_{m} \sin (\omega t-\phi)=I \angle-\phi
$$

Impedance

$$
Z=R+j X_{L}=\frac{V \angle 0}{I \angle-\phi}
$$

$$
\phi=\tan ^{-1} \frac{X_{L}}{R}
$$

$V=I Z$
Active power (Watts) $P=V I \cos \phi=I^{2} R$
Reactive power (VAr) $Q=V I \sin \phi=I^{2} X_{L}$
Apparent power (VA) $S=V I=I^{2} Z$
Power factor $\cos \phi=\frac{R}{Z}$

Series RC circuit:
(

Series RLC Circuit:

If $X_{L}>X_{C}$	
	$\begin{aligned} & v=V_{m} \sin \omega t=V \angle 0 \\ & i=I_{m} \sin (\omega t-\phi)=I \angle-\phi \\ & \phi=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right) \\ & Z=R+j X_{L}-j X_{C} \\ & V=I Z \\ & \cos \phi=\frac{R}{Z} \end{aligned}$
If $X_{C}>X_{L}$	
	$\begin{aligned} & v=V_{m} \sin \omega t=V \angle 0 \\ & i=I_{m} \sin (\omega t+\phi)=I \angle \phi \\ & Z=R+j X_{L}-j X_{C} \\ & V=I Z \\ & \cos \phi=\frac{R}{Z} \end{aligned}$

Three Phase AC Circuits:
Nomenclature:

$\mathrm{V}_{\mathrm{L}}=$ line voltage,	$\emptyset=$ phase angle between phase voltage and phase current
$\mathrm{I}_{\mathrm{L}}=$ line current,	$\mathrm{W}_{1}, \mathrm{~W}_{2}$ =Two wattmeters reading
$\mathrm{V}_{\mathrm{Ph}}=$ phase voltage,	$\mathrm{P}_{\mathrm{Ph}}=$ Active power per phase
$\mathrm{I}_{\mathrm{Ph}}=$ phase current,	$\mathrm{Q}_{\mathrm{Ph}}=$ Reactive power per phase
$\mathrm{Z}_{\mathrm{ph}}=$ Impedance per phase	S_{Ph} =Apparent power per phase

1. For star connected three phase AC circuit:

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{L}}=\sqrt{3} \mathbf{V}_{\mathbf{P h}} \text { Volts } \\
& \mathbf{I}_{\mathbf{L}}=\mathbf{I}_{\mathbf{P h}} \text { Amps } \\
& \mathbf{Z}_{\mathbf{p h}}=\frac{\mathbf{V}_{\mathbf{p h}}}{\mathbf{I}_{\mathbf{p h}}} \Omega
\end{aligned}
$$

2. For delta connected three phase AC circuit:

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{L}}=\mathbf{V}_{\mathbf{P h}} \text { Volts } \\
& \mathbf{I}_{\mathbf{L}}=\sqrt{3} \mathbf{I}_{\mathbf{P h}} \text { Amps } \\
& \mathbf{Z}_{\mathbf{p h}}=\frac{\mathbf{V}_{\mathbf{p h}}}{\mathbf{I}_{\mathbf{p h}}} \mathbf{\Omega}
\end{aligned}
$$

3. Power in a three phase AC circuit:
4. $\mathbf{P}_{\mathbf{P h}}=\mathbf{V}_{\mathbf{P h}} \mathbf{I}_{\mathbf{P h}} \cos \emptyset$ Watts
5. $\mathbf{Q}_{\mathbf{P h}}=\mathbf{V}_{\mathbf{P h}} \mathbf{I}_{\mathbf{P h}} \sin \emptyset \quad \mathrm{VAR}$
6. $\mathbf{S}_{\mathbf{P h}}=\mathbf{V}_{\mathbf{P h}} \mathbf{I}_{\mathbf{P h}} \quad \mathrm{VA}$
7. $\mathbf{P}=\sqrt{3} V_{L} \mathbf{I}_{\mathrm{L}} \cos \emptyset$ Watts
8. $\mathbf{Q}=\sqrt{3} \mathbf{V}_{\mathrm{L}} \mathbf{I}_{\mathrm{L}} \sin \emptyset$ VAR
9. $\mathbf{S}=\sqrt{3} V_{\mathbf{L}} \mathbf{I}_{\mathbf{L}} V A$

10. Measurement of power using two wattmeter:

$\mathbf{W}_{\mathbf{1}}=\mathbf{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos (30-\emptyset)$ Watts
$\mathbf{W}_{\mathbf{2}}=\mathbf{V}_{\mathbf{L}} \mathbf{I}_{\mathbf{L}} \cos (\mathbf{3 0}+\emptyset)$ Watts
$\mathbf{W}_{1}+W_{2}=\sqrt{3} V_{L} I_{L} \cos \emptyset \ldots \ldots .$. three phase power
$\mathbf{W}_{\mathbf{1}}-\mathbf{W}_{\mathbf{2}}=\mathbf{V}_{\mathbf{L}} \mathbf{I}_{\mathbf{L}} \boldsymbol{\operatorname { s i n }} \emptyset$
Power factor,
$\cos \emptyset=\cos \left\{\tan ^{-1}\left[\frac{\sqrt{3}\left(w_{1}-w_{2}\right)}{\left(w_{1}+W_{2}\right)}\right]\right\}$

Module 3 (DC Generator)

EMF Equation:

$$
E_{g}=\frac{\varnothing Z N P}{60 A} \text { volts }
$$

$\boldsymbol{E}_{\boldsymbol{g}}=$ generated emf in volts
$\boldsymbol{P}=$ number of poles
$\emptyset=$ flux per pole in $w b$
$\boldsymbol{Z}=$ number of slots \times number of conductors per slot
$\boldsymbol{N}=$ speed of the armature in rpm
$\boldsymbol{A}=$ number of parallel paths
$\boldsymbol{A}=\boldsymbol{P}$ for lap winding ; $\boldsymbol{A}=\mathbf{2}$ for wave winding

Nomenclature Used:

$\boldsymbol{E}_{\boldsymbol{g}}=$ generated emf in volts
$\boldsymbol{V}=$ terminal voltage in volts
$\boldsymbol{R}_{\boldsymbol{a}}=$ armature resistance in ohms
$\boldsymbol{R}_{\boldsymbol{s} \boldsymbol{e}}=$ series field winding resistance in ohms
$\boldsymbol{R}_{\boldsymbol{s} \boldsymbol{h}}=$ shunt field winding resistance in ohms
$\boldsymbol{I}_{\boldsymbol{a}}=$ armature current in amperes
$\boldsymbol{I}_{\boldsymbol{s e}}=$ series field current in amperes
$\boldsymbol{I}_{\boldsymbol{s h}}=$ shunt field current in amperes
$\boldsymbol{I}_{\boldsymbol{L}}=$ load current in amperes
$\boldsymbol{R}_{\boldsymbol{L}}=$ load resistance in ohms
$\boldsymbol{B C D}=$ Brush Contact Drop

Types of DC Generators:

1. DC SERIES GENERATOR

2. DC SHUNT GENERATOR

	$\begin{aligned} & I_{a}=I_{L}+I_{\text {sh }} \text { amps } \\ & V=E_{g}-I_{a} R_{a}-\text { BCD volts } \\ & V=I_{L} R_{L}=I_{s h} R_{s h} \text { volts } \end{aligned}$

3. DC LONG SHUNT COMPOUND GENERATOR

$I_{a}=I_{s e} a m p s$
$I_{a}=I_{L}+I_{s h} a m p s$
$V=I_{s h} R_{s h}=I_{L} R_{L}$ volts
$V=E_{g}-I_{a}\left(R_{a}+R_{\text {se }}\right)-B C D$ volts
4. DC SHORT SHUNT COMPOUND GENERATOR

$I_{a}=I_{s e}+I_{s h} \mathrm{amps}$
$I_{s e}=I_{L} \mathrm{amps}$
$V=I_{L} R_{L}$ volts
$E_{g}-I_{a} R_{a}-B C D=I_{\text {sh }} R_{\text {sh }}$ volts
$V=E_{g}-I_{a}\left(R_{a}+R_{\text {se }}\right)-$ BCD volts

Module 3 (DC Motor)

Nomenclature Used:

$\mathbf{V} \quad=\mathrm{DC}$ input voltage in volts
$\mathbf{I}_{\mathbf{L}} \quad=$ Line Current in amps
$\mathbf{P} \quad=$ Number of poles
$\mathbf{N}=$ Speed in rpm
$\boldsymbol{\Phi} \quad=$ Flux in wb
$\mathbf{T}_{\text {sh }}=$ Shaft Torque in $\mathrm{N}-\mathrm{m}$
$\mathbf{T}_{\mathbf{a}} \quad=$ Armature Torque in $\mathrm{N}-\mathrm{m}$
$\mathbf{E}_{\mathbf{b}} \quad$ = Back EMF in volts
A = Number of parallel paths
$\boldsymbol{\omega} \quad=$ Angular Velocity in radians per second
$\mathbf{I}_{\mathrm{se}} \quad=$ Series Field Current in amps
$\mathbf{I}_{\text {sh }}=$ Shunt Field Current in amps
$\mathbf{I}_{\mathbf{a}} \quad=$ Armature Current in amps
BCD = Brush Contact Drop in volts
$\mathbf{R}_{\mathbf{a}} \quad=$ Armature Resistance in ohm
$\mathbf{R}_{\text {sh }} \quad=$ Shunt field Resistance in ohm
$\mathbf{R}_{\text {se }} \quad=$ Series field Resistance in ohm
$\mathbf{I}_{\mathbf{a}} \quad=$ Armature current in Amps

Back EMF

$$
\mathbf{E}_{\mathbf{b}}=\frac{\emptyset \times \mathrm{Z} \times \mathbf{N} \times \mathbf{P}}{60 \times \mathrm{A}} \text { volts }
$$

Armature Torque

$\mathbf{T}_{\mathrm{a}}=\frac{\varnothing \times \mathbf{Z} \times \mathbf{I}_{\mathrm{a}} \times \mathbf{P}}{2 \times \boldsymbol{\pi} \times \mathbf{A}} \quad \mathbf{N}-\mathbf{m}$

Angular velocity

$$
\omega=\frac{2 \times \pi \times \mathrm{N}}{60} \text { radians } / \text { second }
$$

Shaft Torque

$$
T_{\text {sh }}=\frac{\text { Output of motor in } \mathrm{HP} \times 746}{\omega} \mathrm{~N}-\mathrm{m}
$$

Types of DC Motor		
DC SHUNT MOT		$\mathbf{I}_{\text {sh }}=\frac{\mathbf{V}}{\mathbf{R}^{\prime}} \quad$ amps
I_{L}	$I_{s h} q \quad l_{a}$	$\begin{aligned} & \mathbf{I}_{\mathbf{L}}=\mathbf{I}_{\mathrm{a}}+\mathbf{I}_{\mathrm{sh}} \text { amps } \\ & \mathbf{E}_{\mathbf{b}}=\mathbf{V}-\mathbf{I}_{\mathrm{a}} \mathbf{R}_{\mathrm{a}}-\mathbf{B C D} \text { volts } \end{aligned}$
$\begin{gathered} \text { Supply } \\ \mathrm{V} \end{gathered}$	Field \qquad	

DC SERIES MOTOR	
	$\mathbf{I}_{\mathbf{L}}=\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{se}} \mathbf{a m p s}$ $\mathbf{E}_{b}=\mathbf{V}-\mathbf{I}_{\mathbf{a}}\left(\mathbf{R}_{\mathrm{a}}+\mathbf{R}_{\text {se }}\right)-\mathbf{B C D} \text { volts }$
DC SHORT SHUNT COMPOUND MOTOR	
	$\begin{aligned} & I_{s h}=\frac{V-I_{\text {se }} R_{s e}}{R_{s h}} a m p s \\ & I_{L}=I_{s e}=I_{a}+I_{s h} a m p s \\ & E_{b}=V-I_{s e} R_{s e}-I_{a} R_{a}-B C D \text { volts } \end{aligned}$
DC LONG SHUNT COMPOUND MOTOR	
	$\begin{aligned} & \mathbf{I}_{\text {sh }}=\frac{\mathbf{V}}{\mathbf{R}_{\text {sh }}} \quad \mathbf{a m p s} \\ & \mathbf{I}_{\mathrm{L}}=\mathbf{I}_{\mathrm{a}}+\mathbf{I}_{\text {sh }} \mathbf{a m p s} \\ & \mathbf{I}_{\mathrm{a}}=\mathbf{I}_{\text {se }} \quad \mathbf{a m p s} \\ & \mathbf{E}_{\mathbf{b}}=\mathbf{V}-\mathbf{I}_{\mathbf{a}}\left(\mathbf{R}_{\mathbf{a}}+\mathbf{R}_{\text {se }}\right)-\mathbf{B C D} \text { volts } \end{aligned}$

Module 4 (Transformers)

Nomenclature:
$E_{1}=$ emf induced in primary winding in volts
$E_{2}=$ emf induced in secondary winding in volts
$f=$ Frequency of supply voltage in Hertz
$N_{1}=$ number of primary windings
$N_{2}=$ number of secondary windings
$\phi_{m}=$ Maximum flux linking the windings in webers
$V_{1}=$ supply voltage given to the primary windings in volts
$V_{2}=$ output voltage across secondary windings in volts
$I_{1}=$ current flowing through primary windings
$I_{2}=$ current flowing through secondary windings
$W_{i}=$ Iron loss
$W_{c u}=$ Full load Copper loss
$\mathrm{x}=$ fractional load
$\mathrm{V}=$ volume of the core
$\mathrm{B}_{\max }=$ maximum value of flux density in the core
$\eta=$ a constant, whose value depends on the quality of the magnetic material used for
making the core
$\beta=$ a constant, whose value depends on the quality of the magnetic material used for making the core
$t=$ thickness of the laminations

Emf equation:

$\mathrm{E}_{1}=4.44 \mathrm{f} \phi_{\mathrm{m}} \mathrm{N}_{1}$ Volts
$\mathrm{E}_{2}=4.44 \mathrm{f} \phi_{\mathrm{m}} \mathrm{N}_{2}$ Volts

Transformation ratio:

$\mathrm{K}=\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}$

Condition for maximum efficiency:

$\mathrm{W}_{\mathrm{i}}=\mathrm{W}_{\mathrm{cu}}$

Full load currents:

$\mathrm{I}_{1}=\frac{\text { Volt Ampere Rating of a transformer }}{\mathrm{V}_{1}}$ Amps
$\mathrm{I}_{2}=\frac{\text { Volt Ampere Rating of a transformer }}{\mathrm{V}_{2}}$ Amps

Efficiency of a transformer:

$$
\% \eta=\frac{x \times \mathrm{KVA} \times 1000 \times \operatorname{Cos} \emptyset}{\mathrm{x} \times \mathrm{KVA} \times 1000 \times \operatorname{Cos} \emptyset+\mathrm{W}_{\mathrm{i}}+\mathrm{x}^{2} \mathrm{~W}_{\mathrm{cu}(\mathrm{FL})}} \times 100
$$

Hysteresis loss in transformer:

$W_{h}=\eta B^{1.6}{ }_{\text {max }} f V$ Watt

Eddy current loss in transformer:

$W_{e}=\beta B_{\text {max }} f^{2} t^{2} V$ Watt

Module 4 (Three-phase induction Motors)

Synchronous speed of rotating magnetic field $N s=\frac{120 f}{P}$
Where $\mathrm{f}=$ frequency in $\mathrm{Hz}, \mathrm{P}=$ Number of poles
Percentage slip $S=\frac{N s-N}{N s}$
Where $N=$ rotor speed, $N_{S}=$ Synchronous speed
$f^{\prime}=s f$
Where f, frequency of rotor induced emf in Hz

Rotor speed $N=N_{S}(1-s)$
Measuring instruments
Maxwell's bridge for inductance

Module 5
Two way Control of Lamp

Truth Table

S. No.	Switch S1	Switch S2	Lamp
1	$\mathrm{~A}_{1}-\mathrm{B}_{1}$	$\mathrm{~A}_{2}-\mathrm{B}_{2}$	ON
2	$\mathrm{~A}_{1}-\mathrm{B}_{1}$	$\mathrm{~A}_{2}-\mathrm{C}_{2}$	OFF
3	$\mathrm{~A}_{1}-\mathrm{C}_{1}$	$\mathrm{~A}_{2}-\mathrm{B}_{2}$	OFF
4	$\mathrm{~A}_{1}-\mathrm{C}_{1}$	$\mathrm{~A}_{2}-\mathrm{C}_{2}$	ON

Three way Control of Lamp

Truth Table

Sl. No.	Switch S1	Intermediate Switch S3	Position of S3	Switch S2	Lamp
1	$\mathrm{A}_{1}-\mathrm{B}_{1}$	$P-S \& Q-R$	Cross Connection	$\mathrm{A}_{2}-\mathrm{B}_{2}$	OFF
2	$\mathrm{A}_{1}-\mathrm{B}_{1}$	$P-S \& Q-R$		$\mathrm{A}_{2}-\mathrm{C}_{2}$	ON
3	$\mathrm{A}_{1}-\mathrm{C}_{1}$	$P-S \& Q-R$		$\mathrm{A}_{2}-\mathrm{B}_{2}$	ON
4	$\mathrm{A}_{1}-\mathrm{C}_{1}$	$\mathrm{P}-\mathrm{S} \& \mathrm{Q}-\mathrm{R}$		$\mathrm{A}_{2}-\mathrm{C}_{2}$	OFF
5	$\mathrm{A}_{1}-\mathrm{B}_{1}$	$\mathrm{P}-\mathrm{Q} \& \mathrm{R}-\mathrm{S}$	Straight Connection	$\mathrm{A}_{2}-\mathrm{B}_{2}$	ON
6	$\mathrm{A}_{1}-\mathrm{B}_{1}$	$\mathrm{P}-\mathrm{Q} \& \mathrm{R}-\mathrm{S}$		$\mathrm{A}_{2}-\mathrm{C}_{2}$	OFF
7	$\mathrm{A}_{1}-\mathrm{C}_{1}$	$\mathrm{P}-\mathrm{Q} \& \mathrm{R}-\mathrm{S}$		$\mathrm{A}_{2}-\mathrm{B}_{2}$	OFF
8	$\mathrm{A}_{1}-\mathrm{C}_{1}$	$\mathrm{P}-\mathrm{Q} \& \mathrm{R}-\mathrm{S}$		$\mathrm{A}_{2}-\mathrm{C}_{2}$	ON

Two-Part Electricity Tariff

Total charges $=$ Rs $(b \times k W+c \times k W h)$

$$
=\text { Fixed charges }+ \text { Running charges }
$$

Where $b=$ charge per kW of maximum demand

$\mathrm{c}=$ charge per kWh of energy consumed

