Page 01 of 02

Model Question Paper-I with effect from 2023-24 (CBCS Scheme)

USN

Third Semester B.E. Degree Examination

Digital System Design using Verilog

TIME: 03 Hours

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	*Bloom's Taxonomy Level	Marks
Q.01	a	Design a logic circuit that has 4 inputs, the output will only be high, when the majority of the inputs are high. Use k-map to simplify	L3	10
	b	Simplify the given Boolean function using Quine MC Cluskey find the prime and essential prime implicants and also verify with K-map $f(A,B,C,D)=\sum m(0,1,4,5,7,8,13,15)+d(2)$	L3	10
		OR		
Q.02	a	Simplify the following expression using K-map. Implement the simplified expression using basic gates only $f(a,b,c,d)=\Pi M(0,2,3,4,5,12,13)+dc(8,10)$	L3	10
	b	Define the following terms with example. Minterm, Maxterm	L1	04
	c	Place the following equation into proper canonical form P = f(a,b,c) = ab'+bc T = f(a,b,c) = (a+b) (b'+c)	L3	06
		Module-2		
Q. 03	a	Design two bit magnitude comparator and write truth table, relevant expression and logic diagram.	L3	08
	b	Implement the following functions using 3:8 decoder $f1(a,b,c) = \sum m(1,3,5)$ $f2(a,b,c) = \sum m(0,1,6)$	L3	6
	c	Implement Y=ad+bc'+bd using 4:1 mux considering A and B as a select line.	L3	6
		OR		
Q.04	a	Explain 4-bit carry look ahead adder with neat diagram and relevant expressions.	L2	10
	b	Implement the following Boolean function using 8:1 multiplexer and 4:1 multiplexer $f(a,b,c,d) = \Sigma m(0,1,5,6,10,12,14,15)$.	L3	10
		Module-3		
Q. 05	a	Explain the working of Master-Slave JK flip-flop with functional table and timing diagram.	L2	10
	b	Explain Universal Shift Register with the help of logic diagram, mode control table.	L2	10
	•	OR		
Q. 06	a	Derive Characteristic equation for SR,T,D and JK flip-flop with the help of function table	L2	10
	b	Design a Synchronous Mod-6 counter using SR flip-flop for the sequence 0-2-3-6-5-1.	L3	10

Max. Marks: 100

BEC302

		Module-4		
Q. 07	a	Realize the 2x1 Multiplexer with active low enable and also write the	L3	10
		Verilog program by considering delay time to the signal assignment		
		statements with simulation waveform.		
	b	Realize the Full Subtractor circuit using Verilog data flow description.	L3	10
		OR		
Q. 08	а	List all the data types available in Verilog HDL and explain any four data	L2	10
		types with examples.		
	b	Explain arithmetic and logical operator with example.	L2	10
Module-5				
Q. 09	а	Realize the D-Latch Behavioral description code with circuit diagram,	L3	10
		waveform.		
	b	Write a Verilog structural code for four bit ripple carry adder.	L3	10
OR				
Q. 10	а	Explain with syntax of the following sequential statements in Verilog. i)	L2	8
		For-loop ii) While-loop iii) Repeat iv)Forever		
	b	Write a Verilog program for 8:1 MUX using case statement.	L3	6
	с	Realize the JK flip-flop using Verilog Behavioral description.	L3	6

BEC302

Model Question Paper-II with effect from 2023-24 (CBCS Scheme)

USN

Third Semester B.E. Degree Examination

Digital System Design using Verilog

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	*Bloom's Taxonomy Level	Marks
Q.01	a	What is combinational circuit? Design a combinational logic circuit with three input variables that will produce logic 1 output when more than one	L2	06
		input variables are logic 1.		
	b	Convert the following Boolean function into canonical minterm and maxterm form in decimal format $R = f(a, b, c) = a + b(a + c) + bc$	L2	06
	c	Find all the prime implicants and essential prime implicants for the		
		following function using k-map method.	L3	08
		(i) $M = f(a, b, c, d) = \Sigma(1, 5, 7, 8, 9, 10, 11, 13, 15)$		
		(ii) $Y = f(a, b, c, d) = \pi(0, 2, 3, 8, 9, 10, 12, 14)$		
		OR		
Q.02	а	. Simplify the following Boolean functions using K-map		
		(i) $Y = f(a, b, c, d) = \pi(0, 1, 4, 5, 8, 9, 11) + d(2, 10)$	L3	10
		(ii) $M = f(w, x, y, z) = \Sigma(0.1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$		
	b	Solve the following Boolean function by using QM minimization		
		technique	13	10
		$P = f(w, x, y, z) = \Sigma(2,3,4,5,13,15) + d(8,9,10,11)$	LJ	10
		Verify using K-map method		
		Module-2		
Q. 03	a	Implement the following functions using 3:8 decoder along with OR and/or NOR gates. In each case the gates should be selected so as to minimize their total number of inputs. (a) $f_1 (X_2, X_1, X_0) = \Sigma m(0,2,4,6,7)$ and $f_2 (X_2, X_1, X_0) = \Sigma m(1,3,5,6,7)$ (b) $f_1 (X_2, X_1, X_0) = \Pi M (0,2,4,6,7)$ and $f_1 (X_2, X_1, X_0) = \Pi M (1,3,7)$	L3	07
	b	Construct single decade decimal adder with necessary correction circuit design	L2	08
	c	Design a one-bit comparator circuit.	L2	05
		OR		
Q.04	а	Construct the following function $S = f(a,b,c,d) = \Sigma(1.4.5.7.8.9.14.15)$ using		0-
		(a)8:1 Mux and (b)16:1 Mux	L2	07
	b	Construct the functional table for 4 to 2 line priority encoder with a valid		
		output, assigning highest priority to highest bit position or input with	L2	07
		highest index and obtain the minimal sum expressions for the outputs.		
	c	Implement a Full adder using PAL	L2	06
		Module-3		
Q. 05	а	Explain the working of Master-Slave JK flip-flop with functional table and timing diagram	L2	08
	b	Derive the characteristic equations of SR and D Flipflops	L2	04
	c	Make use of negative edge triggered T -Flip Flops to describe the working	L2	08

BEC302

		of 4-bit binary ripple counter. Also draw the timing diagram.		
		OR		
Q. 06	a	Make use of 4-bit shift register circuit to explain the following modes of operations: SISO, SIPO, PISO and PIPO.	L2	08
	b	Develop a mod-5 synchronous counter with the sequence 0,2,6,3,1 using T -Flip Flops.	L3	07
	c	Explain the working of Ring counter with necessary diagram and equations.	L2	05
		Module-4		
Q. 07	a	List all the data types available in Verilog HDL. Explain any three data types with examples.	L2	08
	b	Explain three modeling styles available in Verilog with half adder example	L2	07
	c	(ii)Evaluate the following:i)A * B ii) A + B iii) A << 2 iv) {A [3], B}	L2	05
		Given: A=0011 B= 0100		
		OR		
Q. 08	a	Explain the Signal declaration and Assignment Statements in Verilog data- flow description.	L1	06
	b	Realize D latch with active high enable and also write the Verilog program by considering delay time to the signal assignment statements with simulation waveforms.	L2	08
	с	Write a verilog dataflow model for full adder	L2	06
		Module-5		
Q. 09	a	Write a verilog behavioural description for 8:1 mux along with the design and timing diagrams.	L2	08
	b	Explain different case statements available in verilog with syntax and necessary examples	L2	06
	с	Realize the Binary up-down counter using verilog behavioral description.	L2	06
OR				
Q. 10	a	Explain with syntax of the following sequential statements in Verilog. i) For-loop ii) While-loop iii) Repeat	L2	06
	b	Write a structural description of 3-bit ripple carry adder	L2	08
	c	Write a verilog code for 2x1 mux using If Else statement	L2	06