Model Question Paper-I with effect from 2023-24 (CBCS Scheme)

USN

Third Semester B.E. Degree Examination

Digital System Design using Verilog
TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Module -1			*Bloom's Taxonomy Level	Marks
Q. 01	a	Design a logic circuit that has 4 inputs, the output will only be high, when the majority of the inputs are high. Use k-map to simplify	L3	10
	b	Simplify the given Boolean function using Quine MC Cluskey find the prime and essential prime implicants and also verify with K-map $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,4,5,7,8,13,15)+\mathrm{d}(2)$	L3	10
OR				
Q. 02	a	Simplify the following expression using K-map. Implement the simplified expression using $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\Pi \mathrm{M}(0,2,3,4,5,12,13)+\mathrm{dc}(8,10)$ basic	L3	10
	b	Define the following terms with example. Minterm, Maxterm	L1	04
	c	Place the following equation into proper canonical form $\begin{aligned} & \mathrm{P}=\mathrm{f}(\mathrm{a}, \mathrm{~b}, \mathrm{c})=\mathrm{ab} \mathrm{~b}^{\prime}+\mathrm{bc} \\ & \mathrm{~T}=\mathrm{f}(\mathrm{a}, \mathrm{~b}, \mathrm{c})=(\mathrm{a}+\mathrm{b})\left(\mathrm{b}^{\prime}+\mathrm{c}\right) \end{aligned}$	L3	06
Module-2				
Q. 03	a	Design two bit magnitude comparator and write truth table, relevant expression and logic diagram.	L3	08
	b	Implement the following functions using 3:8 decoder $\begin{aligned} & \mathrm{f} 1(\mathrm{a}, \mathrm{~b}, \mathrm{c})=\sum \mathrm{m}(1,3,5) \\ & \mathrm{f} 2(\mathrm{a}, \mathrm{~b}, \mathrm{c})=\sum \mathrm{m}(0,1,6) \end{aligned}$	L3	6
	c	Implement $\mathrm{Y}=\mathrm{ad}+\mathrm{bc}+\mathrm{bd}$ using 4:1 mux considering A and B as a select line.	L3	6
OR				
Q. 04	a	Explain 4-bit carry look ahead adder with neat diagram and relevant expressions.	L2	10
	b	Implement the following Boolean function using 8:1 multiplexer and 4:1 multiplexer $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\Sigma \mathrm{m}(0,1,5,6,10,12,14,15)$.	L3	10
Module-3				
Q. 05	a	Explain the working of Master-Slave JK flip-flop with functional table and timing diagram.	L2	10
	b	Explain Universal Shift Register with the help of logic diagram, mode control table.	L2	10
OR				
Q. 06	a	Derive Characteristic equation for SR,T,D and JK flip-flop with the help of function table	L2	10
	b	Design a Synchronous Mod-6 counter using SR flip-flop for the sequence 0-2-3-6-5-1.	L3	10

Module-4			L3	10
Q. 07	a	Realize the 2×1 Multiplexer with active low enable and also write the Verilog program by considering delay time to the signal assignment statements with simulation waveform.		
	b	Realize the Full Subtractor circuit using Verilog data flow description.	L3	10
OR				
Q. 08	a	List all the data types available in Verilog HDL and explain any four data types with examples.	L2	10
	b	Explain arithmetic and logical operator with example.	L2	10
Module-5				
Q. 09	a	Realize the D-Latch Behavioral description code with circuit diagram, waveform.	L3	10
	b	Write a Verilog structural code for four bit ripple carry adder.	L3	10
OR				
Q. 10	a	Explain with syntax of the following sequential statements in Verilog. i) For-loop ii) While-loop iii) Repeat iv)Forever	L2	8
	b	Write a Verilog program for 8:1 MUX using case statement.	L3	6
	c	Realize the JK flip-flop using Verilog Behavioral description.	L3	6

Model Question Paper-II with effect from 2023-24 (CBCS Scheme)

USN

Third Semester B.E. Degree Examination

Digital System Design using Verilog
TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Module -1			*Bloom's Taxonomy Level	Marks
Q. 01	a	What is combinational circuit? Design a combinational logic circuit with three input variables that will produce logic 1 output when more than one input variables are logic 1 .	L2	06
	b	Convert the following Boolean function into canonical minterm and maxterm form in decimal format $R=f(a, b, c)=a+b(a+c)+b c$	L2	06
	c	Find all the prime implicants and essential prime implicants for the following function using k -map method. (i) $\quad M=f(a, b, c, d)=\Sigma(1,5,7,8,9,10,11,13,15)$ (ii) $Y=f(a, b, c, d)=\pi(0,2,3,8,9,10,12,14)$	L3	08
OR				
Q. 02	a	Simplify the following Boolean functions using K-map (i) $\quad Y=f(a, b, c, d)=\pi(0,1,4,5,8,9,11)+d(2,10)$ (ii) $\quad M=f(w, x, y, z)=\Sigma(0.1,2,4,5,6,8,9,12,13,14)$	L3	10
	b	Solve the following Boolean function by using QM minimization technique $\begin{aligned} & P=f(w, x, y, z)=\Sigma(2,3,4,5,13,15)+\mathrm{d}(8,9,10,11) \\ & \text { Verify using K-map method } \end{aligned}$	L3	10
Module-2				
Q. 03	a	Implement the following functions using 3:8 decoder along with OR and/or NOR gates. In each case the gates should be selected so as to minimize their total number of inputs. (a) $\mathrm{f}_{1}\left(\mathrm{X}_{2}, \mathrm{X}_{1}, \mathrm{X}_{0}\right)=\Sigma \mathrm{m}(0,2,4,6,7)$ and $\mathrm{f}_{2}\left(\mathrm{X}_{2}, \mathrm{X}_{1}, \mathrm{X}_{0}\right)=\Sigma$ $\mathrm{m}(1,3,5,6,7)$ (b) $\mathrm{f}_{1}\left(\mathrm{X}_{2}, \mathrm{X}_{1}, \mathrm{X}_{0}\right)=\Pi \mathrm{M}(0,2,4,6,7)$ and $\mathrm{f}_{1}\left(\mathrm{X}_{2}, \mathrm{X}_{1}, \mathrm{X}_{0}\right)=\Pi \mathrm{M}(1,3,7)$	L3	07
	b	Construct single decade decimal adder with necessary correction circuit design.	L2	08
	c	Design a one-bit comparator circuit.	L2	05
	OR			
Q. 04	a	Construct the following function $S=f(a, b, c, d)=\Sigma(1,4,5,7,8,9,14,15)$ using (a)8:1 Mux and (b)16:1 Mux	L2	07
	b	Construct the functional table for 4 to 2 line priority encoder with a valid output, assigning highest priority to highest bit position or input with highest index and obtain the minimal sum expressions for the outputs.	L2	07
	c	Implement a Full adder using PAL	L2	06
Module-3				
Q. 05	a	Explain the working of Master-Slave JK flip-flop with functional table and timing diagram	L2	08
	b	Derive the characteristic equations of SR and D Flipflops	L2	04
	c	Make use of negative edge triggered T -Flip Flops to describe the working	L2	08

		of 4-bit binary ripple counter. Also draw the timing diagram.		
OR				
Q. 06	a	Make use of 4-bit shift register circuit to explain the following modes of operations: SISO, SIPO, PISO and PIPO.	L2	08
	b	Develop a mod-5 synchronous counter with the sequence $0,2,6,3,1$ using T -Flip Flops.	L3	07
	c	Explain the working of Ring counter with necessary diagram and equations.	L2	05
Module-4				
Q. 07	a	List all the data types available in Verilog HDL. Explain any three data types with examples.	L2	08
	b	Explain three modeling styles available in Verilog with half adder example	L2	07
	c	(ii)Evaluate the following: i) $\mathrm{A} * \mathrm{~B}$ ii) $\mathrm{A}+\mathrm{B}$ iii) $\mathrm{A} \ll 2$ iv) $\{\mathrm{A}[3], \mathrm{B}\}$ Given: $A=0011 B=0100$	L2	05
OR				
Q. 08	a	Explain the Signal declaration and Assignment Statements in Verilog dataflow description.	L1	06
	b	Realize D latch with active high enable and also write the Verilog program by considering delay time to the signal assignment statements with simulation waveforms.	L2	08
	c	Write a verilog dataflow model for full adder	L2	06
Module-5				
Q. 09	a	Write a verilog behavioural description for 8:1 mux along with the design and timing diagrams.	L2	08
	b	Explain different case statements available in verilog with syntax and necessary examples	L2	06
	c	Realize the Binary up-down counter using verilog behavioral description.	L2	06
	OR			
Q. 10	a	Explain with syntax of the following sequential statements in Verilog. i) For-loop ii) While-loop iii) Repeat	L2	06
	b	Write a structural description of 3-bit ripple carry adder	L2	08
	c	Write a verilog code for 2×1 mux using If Else statement	L2	06

