Model Question Paper-I with effect from 2023-24 (CBCS Scheme)

USN

Third Semester B.E. Degree Examination

Network Analysis

TIME: 03 Hours

Max. Marks: 100

Note: Answer any FIVE full questions, choosing at least ONE question from each MODULE

Q.01 a Reduce the Network shown in Fig. 1(a), to a single voltage source in series with a resistance using source shifting and source transformation. L Image: series with a resistance using source shifting and source transformation. Image: series with a resistance using source shifting and source transformation. Image: series with a resistance using source shifting and source transformation. Image: series with a resistance using source shifting and source transformation. Image: series with a resistance using source shifting and source transformation. Image: series with a resistance using source shifting and source transformation. Image: series with a resistance between A and B using star delta transformation for the network shown in Fig. 1(b). Image: series series with a resistance between A and B using star delta transformation for the network shown in Fig. 1(c). Image: series seri	Module -1		*Bloom's Taxonomy Level	Marks
b Find equivalent resistance between A and B using star delta transformation for the network shown in Fig. 1(b). 6-2 4-4 4-4 4-5-2 4-4 4-5-2 4-5-2 4-5-2 4-5-2 5	Q.01 a	Reduce the Network shown in Fig. 1(a), to a single voltage source in series with a resistance using source shifting and source transformation. $ \begin{array}{c} 16-2 \\ 16-2 \\ 16-2 \\ 12-2 \\ 12-2 \\ Fig. Q1(a) \end{array} $	L3	7
c Determine Vo using mesh analysis for the network shown in Fig. 1(c) L below. 2Iq $ k \land k \land$	b	Find equivalent resistance between A and B using star delta transformation for the network shown in Fig. 1(b). 6-n 4-n 4-n 5-n 4-n 5-n 4-n 6-n 4-n 6-n 4-n 6-n 6-n 6-n 4-n 6-n 6-n 6-n 6-n 4-n 6-n 6-n 6-n 6-n 4-n 6	L2	7
	c	Determine Vo using mesh analysis for the network shown in Fig. 1(c) below. (IKA IKA IKA IKA IKA IKA IKA IKA IKA IKA	L3	6

0.00	1		1.0	-
Q.02	a	Find Vx in the network shown in Fig. $2(a)$ using Node analysis.	L3	1
		^		
		$2V_2$		
		No SA W		
		V_1 V_2 (\rightarrow) V_3		
		8-6 -		
		A. +2- 32-2		
		41A V2 55-2 72		
		Fig. Q2(a)		
	b	Find the equivalent resistance between a and b using star delta	L2	7
		transformation for the circuit shown in Fig. 2(b)		
		• 9		
		6-2 4-2		
		3-2 5-2 1		
		₹5-n- \$e, \$4.A		
		de		
		Fig. Q2(b)		
			1.2	
	С	Determine Voltage V3 in the circuit shown in Fig. 2(c)using mesh	L3	6
		analysis.		
		11 2005 EN 30V		
		80v1 (
		2 1511		
		3002 40 40 +		
		V3		
	1	Fig. $\Omega^2(e)$		
	<u> </u>	Module-2		
Q. 03	a	Find current Ix, in the circuit shown in Fig. 3(a) using superposition	L3	10
	1	theorem.		
	1			
	1			
	1	5-15-2 Viz		
	1	APA ZTAL SEA		
	1	γ^{2} $\downarrow \qquad s^{3-2}$ $\langle h \rangle 4i_{2}$		
	1	(±)3v		
	1			
	1	$\mathbf{F}_{\alpha} \mathbf{O}_{\alpha}$		
1	1	FIG. Q3(a)	1	

	b	Find Thevenin's equivalent at terminals A and B for the circuit shown in Fig. 3(b).	L3	10
		3n $5n3n \xi V_X (10A) (1)V_X44444B$		
		Fig. Q3(b)		
0.04		OR	1.2	0
Q.04	a	Fig. 4(a) using Norton's theorem	L2	8
		$\frac{3\Lambda}{2} = \frac{8\Lambda}{10\Lambda} = 11\Lambda$		
	1	Fig. Q4(a)		0
	D	Find the value of ZL for which maximum power transfer occurs in the network shown in Fig. 4(b). $3n \neq (20/2^{\circ})$ $-j_{4n} = 10n$ Fig. Q4(b)	L3	8
	c	State Millman's Theorem	L1	4
		Module-3		
Q. 05	a	In the network shown in Fig. 5(a), a steady state is reached with the switch k open. At time t=0 +, the switch is closed. Determine the value of Va(0-) and Va(0+). $ \begin{array}{c} 10-1 \\ 10-1 \\ 10-1 \\ 20-1 \\ 20-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1 \\ 10-2 \\ 10-1$	L3	10
		Fig. Q5(a)		

BEC304

	h	For the circuit shown in Fig. $5(h)$, the switch 'S' is changed from position	13	10
		1 to 2 at $t = 0$, the steady state is reached at position 1	23	10
		1 to 2 at $t = 0$, the steady state is reached at position 1.		
		Find the value of <i>i</i> , $\frac{dt}{dt}$, $\frac{dt}{dt^2}$ at $t = 0^+$. Assume that the capacitor is		
		initially uncharged.		
		20v = 20v = 10x $1uF$ Fig. O5(b)		
	1	OR		
Q. 06	a	For the circuit shown in Fig. 6(a), has zero capacitor voltage and zero	L3	10
		inductor current when the switch k is open. At t=0, the switch k is closed. Solve for		
		i) v_1 and v_2 at $t = 0^+ii$) $\frac{dv_1}{dv_1}$ and $\frac{dv_2}{dv_2}$ at $t = 0^+$		
		dt dt dt dt dt dt		
		- Jo- Ming		
		$V = \begin{bmatrix} v_1 \\ v_2 \\ v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_2 \\ v_3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_1 \\ v_2 \\ v_3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_1 \\ v_2 \\ v_3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_1 \\ v_1 \\ v_2 \end{bmatrix}$		
		$\mathbf{Fig. 06(a)}$		
	b	For the network shown in Fig. 6(b), the network is steady state with	L3	10
		switch k closed. At $t = 0$, switch is opened. Determine voltage across		
		switch Vk, $\frac{dVk}{dt}$, at $t = 0^+$.		
		$ \begin{array}{c} t \\ t $		
		Fig. Q6(b)		
		Module-4		
Q. 07	a	In the circuit shown in Fig. 7(a), the source voltage is $V(t)=50\sin 250t V$.	L3	10
		Using Laplace Transform determine current when switch k is closed at		
		(f=()		
		t=0. $v(t) \xrightarrow{k} 2 \cdot 5 \cdot 1$ $v(t) \xrightarrow{k} 1 \cdot (t) \xrightarrow{k} 3 0 \cdot 005 H$		

	b	Obtain the impedance parameters in terms of Hybrid parameters.	L2	6
	c	A coil of 20 Ω resistance has inductance of 0.2H and is connected in parallel with capacitance of 100 μ F. Find the resonant frequency at which circuit will act as non-inductive resistance. Also find dynamic resistance	L2	7
		OR		
Q. 10	a	Determine Transmission parameters for the circuit shown in Fig. 10(a). $\begin{array}{c} & 1 & 2 \\ & 1 & 7 $	L2	7
	b	Express Z parameters in terms of Transmission (ABCD) parameters	L2	6
	с	 A 400Hz AC source is connected in series with a capacitor and a coil whose resistance and inductance are 20mΩ and 6mH respectively. If the circuit is in resonance at 200Hz, Find i Value of Capacitor ii Voltage across capacitor. iii Maximum energy stored. iv Half power frequencies 	L2	7