USN

Third Semester B.E. Degree Examination Network Analysis
TIME: 03 Hours
Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each MODULE

Module -1			*Bloom'sTaxonomyLevel	Marks 7
Q. 01	a	Reduce the Network shown in Fig. 1(a), to a single voltage source in series with a resistance using source shifting and source transformation. Fig. Q1(a)		
	b	Find equivalent resistance between A and B using star delta transformation for the network shown in Fig. 1(b). Fig. Q1(b)	L2	7
	c	Determine Vo using mesh analysis for the network shown in Fig. 1(c) below. Fig. Q1(c)	L3	6
		OR		

Q. 02	a	Find Vx in the network shown in Fig. 2(a) using Node analysis. Fig. Q2(a)	L3	7
	b	Find the equivalent resistance between a and b using star delta transformation for the circuit shown in Fig. 2(b) Fig. Q2(b)	L2	7
	c	Determine Voltage V3 in the circuit shown in Fig. 2(c)using mesh analysis. Fig. Q2(c)	L3	6
		Module-2		
Q. 03	a	Find current Ix, in the circuit shown in Fig. 3(a) using superposition theorem. Fig. Q3(a)	L3	10

	b	For the circuit shown in Fig. 5(b), the switch ' S ' is changed from position 1 to 2 at $t=0$, the steady state is reached at position 1 . Find the value of $i, \frac{d i}{d t}, \frac{d^{2} i}{d t^{2}}$ at $t=0^{+}$. Assume that the capacitor is initially uncharged. Fig. Q5(b)	L3	10
		OR		
Q. 06	a	For the circuit shown in Fig. 6(a), has zero capacitor voltage and zero inductor current when the switch k is open. At $\mathrm{t}=0$, the switch k is closed. Solve for i) v_{1} and v_{2} at $\left.t=0^{+} i i\right) \frac{d v_{1}}{d t}$ and $\frac{d v_{2}}{d t}$ at $t=0^{+}$ Fig. Q6(a)	L3	10
	b	For the network shown in Fig. 6(b), the network is steady state with switch k closed. At $t=0$, switch is opened. Determine voltage across switch $\mathrm{Vk}, \frac{d V k}{d t}$, at $t=0^{+}$. Fig. Q6(b)	L3	10
		Module-4		
Q. 07	a	In the circuit shown in Fig. 7(a), the source voltage is $\mathrm{V}(\mathrm{t})=50 \sin 250 \mathrm{t} \mathrm{V}$. Using Laplace Transform determine current when switch k is closed at $\mathrm{t}=0$. Fig. Q7(a)	L3	10

	b	Determine the Laplace transform of the waveform shown in Fig. 7(b). Fig. Q7(b)	L3	10
OR				
Q. 08	a	Determine $\mathrm{v}_{\mathrm{c}}(\mathrm{t})$ and the current $\mathrm{i}_{\mathrm{c}}(\mathrm{t})$ for $\mathrm{t} \geq 0$ for the circuit shown in Fig. 8(a). Fig. Q8(a)	L3	10
	b	Determine the Laplace transform of periodic saw tooth waveform for the circuit shown in Fig. 8(b). Fig. Q8(b)	L3	10
		Module-5		
Q. 09	a	Find Z and T parametersfor the circuit shown in Fig. 9(a). Fig. Q9(a)	L3	7

	b	Obtain the impedance parameters in terms of Hybrid parameters.	L2	6
	c	A coil of 20Ω resistance has inductance of 0.2 H and is connected in parallel with capacitance of $100 \mu \mathrm{~F}$. Find the resonant frequency at which circuit will act as non-inductive resistance. Also find dynamic resistance	L2	7
OR				
Q. 10	a	Determine Transmission parameters for the circuit shown in Fig. 10(a). Fig. Q10(a)	L2	7
	b	Express Z parameters in terms of Transmission (ABCD) parameters	L2	6
	c	A 400 Hz AC source is connected in series with a capacitor and a coil whose resistance and inductance are $20 \mathrm{~m} \Omega$ and 6 mH respectively. If the circuit is in resonance at 200 Hz , Find i Value of Capacitor ii Voltage across capacitor. iii Maximum energy stored. iv Half power frequencies	L2	7

