Model Question Paper with effect from 2023-24 (CBCS 2022 Scheme)

USN Third Semester B.E. Degree Examination Subject Title: COMPUTER ORGANISATION & ARCHITECTURE

Time :03 Hours

Max Marks:100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

Module -1			RBL	COs	Marks	PO
Q.01	a	With a neat diagram, describe the functional units of a computer	L2	1	8	1
	b	Explain little endian and big endian byte address assignment with a neat diagram. Show how the number 34761395 is stored using these methods.	L2	1	6	1,2
	c	With a neat diagram, discuss the operation concepts in a computer highlighting the role of PC, MAR, MDR & IR	L2	1	6	1,2
OR						
Q.02	a	Explain the IEEE standard used for single & double precision floating point number representation with examples	L2	1	8	1,2
	b	Perform the subtraction on the following pairs of numbers using 5-bit signed 2's complement format. Determine about overflow in each case i) +12 and +9 ii) -15 and -9 iii) +10 and -8	L3	1	6	1,2
	c	Discuss the following with an example i) Three-address instruction ii) Two-address instruction iii) One-address instruction	L2	1	6	1,2
Module-2					0	1.0
Q. 03	a	i) Register ii) Direct iii) Indirect iv) Index	L2	2	8	1,2
	b	Define Stack, Explain push & pop operations on stack with neat diagram and examples	L1	2	6	1
	c	Consider a register R1 to size 16-bits with initial data 5876d. With neat diagram, depict the output in each case after performing the following operations i) LshiftL #2,R1 ii)AshiftR #1,R1 iii) RotateR #1,R1	L2	2	6	1,2
0.04	1		1.2		10	2.2
Q.04	a	 Consider a database of marks scored by students in 3 tests stored in memory starting at address LIST. Each student record consists of student ID followed by marks in 3 tests. Assume each of there to be 4 bytes in size. There are 50 students in the class & this value is stored at location NUM i) Sketch the memory map showing all details 	L3		10	2,3

					DECJ	000
		ii) Develop an ALP using indexed addressing mode to compute				
		the sum of scores by all the students in Test 2 and store the				
		results in location SUM. Write appropriate comments				
	b	Define subroutine. With a program segment illustrate	L2	2	6	1,2
		parameter passing using registers				
	c	Explain memory operations with examples	L2	2	4	1,2
		Module-3				
Q. 05	a	Define interrupt. Point out & explain the various ways of	L2	3	10	1,2
		enabling & disabling interrupts				
	b	Explain operation of DMA with neat diagram	L2	3	6	1,2
	c	Write a explanary note on interrupt hardware	L1	3	4	1,2
		OR				
Q. 06	а	Illustrate interrupt priority scheme with neat diagram	L2	3	8	1,2
	b	Distinguish between memory mapped I/O and standard I/O	L2	3	6	1,2
		write a program segment to read a line of text from keyboard				
		& display it.				
	c	Explain the concept of Vectored Interrupt	L2	3	6	1,2
		Module-4				
Q. 07	a	With a neat diagram, explain the principal of working of	L2	4	10	1,2
		magnetic disk				
	b	Explain the internal organization of 2M x 8 DRAM chip with	L2	4	10	1,2
		neat diagram				
	1	OR				
Q. 08	a	Illustrate Internal structure of static memory	L3	4	10	1,2
	b	With a neat diagram, explain virtual memory organization	L2	4	10	1,2
		Module - 5				
Q. 09	a	Explain Single bus organization of the datapath inside a	L2	5	10	1,2
		processor with neat diagram				
	b	Develop the complete control sequence for the execution of	L3	5	10	2,3
		instruction Add (R3), R1				
	-	OR				
Q. 10	a	Describe Three-bus organization of the datapath with a neat	L2	5	10	1,2
ļ	<u> </u>	diagram.				
	b	Discuss Hardwired control unit organization with relevant	L2	5	10	1,2
		diagram				

BEC306C

Model Question Paper-I with effect from 2023-24 (CBCS Scheme)

USN

Third Semester B.E. Degree Examination

COMPUTER ORGANIZATION AND ARCHITECTURE Max. Marks: 100

TIME: 03 Hours

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	*Bloom's Taxonomy Level	Marks
Q.01	a	Explain the operation of computer with neat block diagram	L2	6M
	b	Write a program to evaluate the arithmetic statement $Y = (A+B)^*(C+D)$	1.2	9М
		using three address, two address, one address, zero address instruction.	L3	011
	c	Write a short note on i) Basic performance equation ii) Clock rate	L2	6M
OR				
Q.02	a	Explain Bus structure architecture with neat diagram.	L2	6M
	b	Illustrate Instruction and sequencing with an example.	L3	8M
	с	Explain the memory operation.	L2	6M
		Module-2		
Q. 03	a	Define Addressing Modes? Explain various types of addressing modes with example.	L2	10M
	b	Define Subroutine and parameter passing, Explain how to pass the parameter by value & by reference.	L2	10M
		OR		
Q.04	a	What are assembler directives? Explain any five assembler directives.	L2	10M
	b	Explain shift & rotate operation with example.	L2	10M
	•	Module-3		
Q. 05	a	What is Bus Arbitration? Explain centralized and distributed arbitration method with neat diagram.	L2	10M
	b	With relevant diagram, discuss the implementation of interrupt priority	L2	10M
		OP		
0.06	9	Explain DMA techniques and its importance	12	10M
Q. 00	a b	Define Interrupt ² Point out and explain the various ways of enabling and		10101
	U	disabling interrupts.	L2	10M
Module-4				
Q. 07	a	Explain the connection of the main memory to the processor.	L2	10M
	b	Explain the internal organization of 1Mx1 dynamic memory chip with neat diagram.	L2	10M
		OR		
Q. 08	a	Explain the Memory hierarchy in computer system.	L2	10M
	b	Explain the magnetic disk principle with neat diagram	L2	10M
		Module-5		
Q. 09	a	Explain single Bus Organization with neat diagram	L2	10M
	b	Write a steps involved in execution of an instruction. And explain the	1.2	1014
		control sequence for execution of the instruction Add(R3), R1	LJ	TOM
		OR		
Q. 10	a	Explain complete processor with neat diagram	L2	10M
	b	Explain the organization of micro programmed control unit with neat diagram. And show how to organize control unit for handling conditional branching.	L3	10M