MODEL QUESTION PAPER DEPARTMENT OF ELECTRONICS ENGINEERING (VLSI DESIGN AND TECHNOLOGY). DIGITAL LOGIC CIRCUIT (BVL303)

		Medule 1	DDI	CO'c	Marke	DO'c				
0.01		Noucle -1		1		103				
Q.01	а	Define the following: I) Sum of product, II) Canonical product of		L	6	1,2				
		sum, III) Essential Prime Implicants, IV) Prime Implicants, V)								
		Maxterm, vi) literal.								
	b	Express the following equation in their proper Canonical form: i) P	L2	1,2	6	1,2				
		= f(a,b,c,d) = ab+c'+acd, ii) $T = f(a,b,c) = b$, $(a+c')$, $(c'+b)$.								
	c	Simplify the following function using K-map and Bealize simplified	12	12	8	12				
	C	expression using logic gates: $V = f(a b c d a) = \pi M (0.2, 4, 6, 8)$		1,2	0	2				
		(a,b,c,u,c) = 1 ($(a,b,c,u,c) = 1$ ($(a,b,c,u,c) = 1$ ($(a,b,c,u,c) = 1$)				5				
9,0,11,12, 14,10,17,18,19,24,25,20,27)										
Ur										
Q.02	а	Simplify the following function, using K-map. Realize	L2	1,2	4	1,2,				
		simplified expression using logic gates:				3				
		V=f(a,b,c,d)=∑m(3,7,10,11,12,13,15).								
	b	Construct a function table for a Binary to Gray code converter.	13	1.2	10	1.2.				
	~	using K man simplify the output equation and design a logical		_,_		3				
		circuit								
	6	Simplify the following function using Opine McCluskey	12	1 2	6	1.2				
	C	Simplify the following function using Quine McCluskey	LZ	1,2	0	1,2				
		method.								
		$S = f(w,x,y,z) = \sum m(1,3,5,13,15,) + d(7,8,9,10,11).$								
Module-2										
Q.03	а	Starting from the function table, design and illustrate a 1-bit full	L2	1,2	6	1,2				
		adder circuit using basic gates.								
	b	With a neat Truth table, and block diagram explain IC 74138, 3:8	L1	1,2	6	1,2				
		Decoder.								
	с	With a neat architecture explain the working of a CPLD	L1	1.2	8	1.2				
		Or		,		,				
0.04	а	Design A 4-bit Carry look Ahead Logic network	13	12	8	12				
0.04	u	Design / 4 bit early look / inedu Logie network.	23	1,2	0	2				
	h	Poplize 1 bit subtractor using IC 74152 Dual 4:1 multiployer	12	1.2	6	12				
	0	Realize the following Declear functions using DLA	LJ	1,2	0 C	1,2				
	С		LZ	1,2	б	1,2,				
		$I J T_0 = A B + A C', II J T_1 = A C + B, III J T_2 = A B + B C', IV J T_3 = B + A C.$				3				
Module -3										
Q.05	а	With a neat logic circuit and truth table, and all relevant cases	L2	1,2,	8	1,2				
		explain the working of a pulse triggered S R flip-flop.		3						
	b	Design a twisted ring counter to count odd sequence.	L2	1,3	6	1,2				
	с	Define the following terms with a neat timing diagram illustration:	L1	1,3	6	1				
		i) Propagation delay, ii) Setup time iii) Hold time.								
Or										
0.06	а	With a neat block diagram explain the implementation of a SR	12	1.3	6	1.2				
	-	Latch as a switch debounce circuit		_,_	-	_,_				
	h	With a neat Block diagram, counting sequence and timing diagram	12	13	6	12				
	U U	illustrate the working of 4 bit Asynchronous Counter		1,5	0	1,2				
	-	The sting with the function to ble design a with well this well.	1.2	1.2	0	1.2				
	С	Starting with the function table, design a universal Shift register.	LZ	1,3	8	1,2				
Module-4										
Q.07	а	Design a MOD-6 synchronous counter to count the sequence:0-2-	L3	1,3,	12	1,2,				
		4-5-3-1, using T flip flop.		4		3				

MODEL QUESTION PAPER DEPARTMENT OF ELECTRONICS ENGINEERING (VLSI DESIGN AND TECHNOLOGY). DIGITAL LOGIC CIRCUIT (BVL303)

-										
	b	With a neat transistor circuit diagram explain the working of SRAM memory cell.	L1	1,3	8	1,2				
Or										
Q.08	а	Design an MOD -6 Up counter using JK Flip-flop.	L3	1,3	12	1,2, 3				
	b	List and explain different types of read only memory.	L1	1,3	8	1				
Module-5										
Q.09	а	With a neat block diagram discuss the Mealy and Moore state machine.	L1	1,3	4	1,2				
	b	A sequential circuit has one input X and two outputs Z. The circuits examine groups of 4 consecutive inputs and produce output if the input sequence is either "0101" or "1001". The circuit should reset after every 4 inputs. Design a mealy state diagram.	L3	1,4, 5,6	10	1,2, 3				
	С	With a neat block diagram explain the working of serial adder with Accumulator.	L1	1,4, 5,6	6	1,2				
or										
Q.10	а	List the guidelines for construction of state graph.	L1	1,4, 5,6	8	1,2				
	b	Design an iterative Comparator	L3	1,4, 5,6	12	1,2, 3				